Prediction of -turns with learning machines

نویسندگان

  • Yu-Dong Cai
  • Xiao-Jun Liu
  • Yi-Xue Li
  • Xue-biao Xu
  • Kuo-Chen Chou
چکیده

The support vector machine approach was introduced to predict the -turns in proteins. The overall self-consistency rate by the re-substitution test for the training or learning dataset reached 100%. Both the training dataset and independent testing dataset were taken from Chou [J. Pept. Res. 49 (1997) 120]. The success prediction rates by the jackknife test for the -turn subset of 455 tetrapeptides and non-turn subset of 3807 tetrapeptides in the training dataset were 58.1 and 98.4%, respectively. The success rates with the independent dataset test for the -turn subset of 110 tetrapeptides and non-turn subset of 30,231 tetrapeptides were 69.1 and 97.3%, respectively. The results obtained from this study support the conclusion that the residue-coupled effect along a tetrapeptide is important for the formation of a -turn. © 2003 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir

The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...

متن کامل

Support Vector Machines for Prediction and Analysis of Beta and Gamma-turns in Proteins

Tight turns have long been recognized as one of the three important features of proteins, together with alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns and most of the rest are gamma-turns. Analysis and prediction of beta-turns and gamma-turns is very useful for d...

متن کامل

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Support Vector Machine for predicting -turn types

Tight turns play an important role in globular proteins from both the structural and functional points of view. Of tight turns, -turns and -turns have been extensively studied, but -turns were little investigated. Recently, a systematic search for -turns classified -turns into nine different types according to their backbone trajectory features. In this paper, Support Vector Machines (SVMs), a ...

متن کامل

A prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)

Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003