Effects of external protons on single cardiac sodium channels from guinea pig ventricular myocytes

نویسندگان

  • J F Zhang
  • S A Siegelbaum
چکیده

The effects of external protons on single sodium channel currents recorded from cell-attached patches on guinea pig ventricular myocytes were investigated. Extracellular protons reduce single channel current amplitude in a dose-dependent manner, consistent with a simple rapid channel block model where protons bind to a site within the channel with an apparent pKH of 5.10. The reduction in single channel current amplitude by protons is voltage independent between -70 and -20 mV. Increasing external proton concentration also shifts channel gating parameters to more positive voltages, consistent with previous macroscopic results. Similar voltage shifts are seen in the steady-state inactivation (h infinity) curve, the time constant for macroscopic current inactivation (tau h), and the first latency function describing channel activation. As pHo decreases from 7.4 to 5.5 the midpoint of the h infinity curve shifts from -107.6 +/- 2.6 mV (mean +/- SD, n = 16) to -94.3 +/- 1.9 mV (n = 3, P less than 0.001). These effects on channel gating are consistent with a reduction in negative surface potential due to titration of negative external surface charge. The Gouy-Chapman-Stern surface charge model incorporating specific proton binding provides an excellent fit to the dose-response curve for the shift in the midpoint of the h infinity curve with protons, yielding an estimate for total negative surface charge density of -1e/490 A2 and a pKH for proton binding of 5.16. By reducing external surface Na+ concentration, titration of negative surface charge can also quantitatively account for the reduction in single Na+ channel current amplitude, although we cannot rule out a potential role for channel block. Thus, titration by protons of a single class of negatively charged sites may account for effects on both single channel current amplitude and gating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Sodium Valproate on Ouabain-Induced Arrhythmia in Isolated Guinea-Pig Atria

Sodium valproate (SV), an antiepileptic drug has several mechanism of action. It inhibits voltage sensitive Na+ channels and reduces intracellular Na accumulation. These actions are similar to that of both phenytoin and carbamazepine. We have investigated the direct cardiac action of SV and its effects on ouabain-induced arrhythmia in isolated guinea-pig atria. The guinea-pig atrium was dissect...

متن کامل

Stereoselective block of cardiac sodium channels by RAC109 in single guinea pig ventricular myocytes.

The effects of the optical stereoisomers of the local anesthetic RAC109 (RAC109-I and RAC109-II) on sodium current in isolated guinea pig ventricular myocytes were investigated by use of the whole-cell variation of the patch-clamp technique. RAC109-I and RAC109-II produced similar levels of tonic block, but RAC109-I produced a significantly larger use-dependent block on repetitive pulsing to po...

متن کامل

Calcium-dependent regulation of voltage-gated sodium channels in cardiac myocytes: just the beginning?

This editorial refers to 'Na + channel regulation by Ca 2+ /calmodulin and Ca 2+ /calmodulin-depndent protein kinase II in guinea-pig ventricular myocytes' by T.

متن کامل

Swelling-activated and isoprenaline-activated chloride currents in guinea pig cardiac myocytes have distinct electrophysiology and pharmacology

We have used the whole-cell patch clamp recording technique to characterize a swelling-activated chloride current in guinea pig atrial and ventricular myocytes and to compare the electrophysiological and pharmacological properties of this current with the isoprenaline-activated chloride current in the same cell types. Osmotic swelling of guinea pig cardiac myocytes caused activation of an outwa...

متن کامل

Endostatin inhibits T-type Ca2+ channel current in guinea pig ventricular myocyte

Endostatin, a fragment of collagen XVIII, is known as an endogenous angiogenesis inhibitor, and its serum concentration increases in various cardiovascular diseases. T-type Ca(2+) channel, low voltage-activated Ca(2+) channel, is not expressed in adult ventricular myocytes. Re-expression of T-type Ca(2+) channels in cardiac myocytes is thought to be involved in the development of cardiac hypert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 98  شماره 

صفحات  -

تاریخ انتشار 1991