The antidepressant hyperforin increases the phosphorylation of CREB and the expression of TrkB in a tissue-specific manner.
نویسندگان
چکیده
Hyperforin is one of the main bioactive compounds that underlie the antidepressant actions of the medicinal plant Hypericum perforatum (St. John's wort). However, the effects of a chronic hyperforin treatment on brain cells remains to be fully addressed. The following study was undertaken to further advance our understanding of the biological effects of this plant extract on neurons. Special attention was given to its impact on the brain-derived neurotrophic factor (BDNF) receptor TrkB and on adult hippocampal neurogenesis since they appear central to the mechanisms of action of antidepressants. The consequences of a chronic hyperforin treatment were investigated on cortical neurons in culture and on the brain of adult mice treated for 4 wk with a daily injection (i.p.) of hyperforin (4 mg/kg). Its effects on the expression of the cyclic adenosine monophosphate response element-binding protein (CREB), phospho-CREB (p-CREB), TrkB and phospho-TrkB (p-TrkB) were analysed by Western blot experiments and its impact on adult hippocampal neurogenesis was also investigated. Hyperforin stimulated the expression of TRPC6 channels and TrkB via SKF-96365-sensitive channels controlling a downstream signalling cascade involving Ca(2+), protein kinase A, CREB and p-CREB. In vivo, hyperforin augmented the expression of TrkB in the cortex but not in the hippocampus where hippocampal neurogenesis remained unchanged. In conclusion, this plant extract acts on the cortical BDNF/TrkB pathway leaving adult hippocampal neurogenesis unaffected. This study provides new insights on the neuronal responses controlled by hyperforin. We propose that the cortex is an important brain structure targeted by hyperforin.
منابع مشابه
Effect of vitamin D supplementation on CREB-TrkB-BDNF pathway in the hippocampus of diabetic rats
Objective(s): Cyclic AMP (adenosine monophosphate) response element-binding protein (CREB) and Brain-derived neurotrophic factor (BDNF) are reported to broadly involve in learning capacity and memory. BDNF exerts its functions via tropomyosin receptor kinase B (TrkB). BDNF transcription is regulated by stimulating CREB phosphorylation. The CREB-TrkB-BDNF pathway is rep...
متن کاملStudy of the role of CREB, BDNF, and VGF neuropeptide in long term antidepressant activity of crocin in the rat cerebellum
Antidepressant activity of crocin, saffron main component, has been established before. Based on previous study, it is suggested that elevation in the levels of BDNF (brain-derived neurotrophic factor), CREB (cAMP response element binding) and VGF neuropeptide could be considered as one probable molecular mechanisms involved in antidepressant activity of long term crocin administration in the r...
متن کاملStudy of the role of CREB, BDNF, and VGF neuropeptide in long term antidepressant activity of crocin in the rat cerebellum
Antidepressant activity of crocin, saffron main component, has been established before. Based on previous study, it is suggested that elevation in the levels of BDNF (brain-derived neurotrophic factor), CREB (cAMP response element binding) and VGF neuropeptide could be considered as one probable molecular mechanisms involved in antidepressant activity of long term crocin administration in the r...
متن کاملChronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus.
The present study demonstrates that chronic, but not acute, adminstration of several different classes of antidepressants, including serotonin- and norepinephrine-selective reuptake inhibitors, increases the expression of cAMP response element binding protein (CREB) mRNA in rat hippocampus. In contrast, chronic administration of several nonantidepressant psychotropic drugs did not influence exp...
متن کاملEffect of 8 weeks aerobic training on SRT1, CREB and BDNF genes expression in hippocampus of Wistar rats
Abstract Introduction & Objective: Exercise through BDNF induces its beneficial effects on the brain. However, its cellular mechanisms are not fully understood. Thus, the purpose of this study was to investigate the effect of 8 weeks aerobic training on mRNA expression of SIRT1, CREB and BDNF genes in hippocampus of male Wistar rats. Methods:Twelve 8-week-old rats were the subjects of this stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The international journal of neuropsychopharmacology
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2013