Relational Abstract Domains for the Detection of Floating-Point Run-Time Errors
نویسنده
چکیده
We present a new idea to adapt relational abstract domains to the analysis of IEEE 754-compliant floating-point numbers in order to statically detect, through Abstract Interpretation-based static analyses, potential floating-point run-time exceptions such as overflows or invalid operations. In order to take the non-linearity of rounding into account, expressions are modeled as linear forms with interval coefficients. We show how to extend already existing numerical abstract domains, such as the octagon abstract domain, to efficiently abstract transfer functions based on interval linear forms. We discuss specific fixpoint stabilization techniques and give some experimental results.
منابع مشابه
07 7 v 1 [ cs . P L ] 1 5 M ar 2 00 7 Relational Abstract Domains for the Detection of Floating - Point Run - Time Errors ⋆
We present a new idea to adapt relational abstract domains to the analysis of IEEE 754-compliant floating-point numbers in order to statically detect, through Abstract Interpretation-based static analyses, potential floating-point run-time exceptions such as overflows or invalid operations. In order to take the non-linearity of rounding into account, expressions are modeled as linear forms with...
متن کاملInterval Slopes as Numerical Abstract Domain for Floating-Point Variables
The design of embedded control systems is mainly done with model-based tools such as Matlab/Simulink. Numerical simulation is the central technique of development and verification of such tools. Floating-point arithmetic, which is well-known to only provide approximated results, is omnipresent in this activity. In order to validate the behaviors of numerical simulations using abstract interpret...
متن کاملInterval Slopes as a Numerical Abstract Domain for Floating-Point Variables
The design of embedded control systems is mainly done with model-based tools such as Matlab/Simulink. Numerical simulation is the central technique of development and verification of such tools. Floatingpoint arithmetic, that is well-known to only provide approximated results, is omnipresent in this activity. In order to validate the behaviors of numerical simulations using abstract interpretat...
متن کاملAn FPGA-based Floating Point Unit for Rounding Error Analysis
Detection of floating-point rounding errors normally requires run-time analysis in order to be effective and software-based tools are seldom used due to the extremely high computational demands. In this paper we present a field programmable gate array (FPGA) based floating-point coprocessor which supports standard IEEE-754 arithmetic, user selectable precision and Monte Carlo Arithmetic (MCA). ...
متن کاملStatic Analysis of Numerical Algorithms
We present a new numerical abstract domain for static analysis of the errors introduced by the approximation by floating-point arithmetic of real numbers computation, by abstract interpretation [3]. This work extends a former domain [4,8], with an implicitly relational domain for the approximation of the floating-point values of variables, based on affine arithmetic [2]. It allows us to analyze...
متن کامل