Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery.

نویسندگان

  • Indrajit Roy
  • Susmita Mitra
  • Amarnath Maitra
  • Subho Mozumdar
چکیده

Calcium phosphate nanoparticles present a unique class of non-viral vectors, which can serve as efficient and alternative DNA carriers for targeted delivery of genes. In this study we report the design and synthesis of ultra-low size, highly monodispersed DNA doped calcium phosphate nanoparticles of size around 80 nm in diameter. The DNA encapsulated inside the nanoparticle is protected from the external DNase environment and could be used safely to transfer the encapsulated DNA under in vitro and in vivo conditions. Moreover, the surface of these nanoparticles could be suitably modified by adsorbing a highly adhesive polymer like polyacrylic acid followed by conjugating the carboxylic groups of the polymer with a ligand such as p-amino-1-thio-beta-galactopyranoside using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride as a coupling agent. We have demonstrated in our studies that these surface modified calcium phosphate nanoparticles can be used in vivo to target genes specifically to the liver.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium based non-viral gene delivery: an overview of methodology and applications.

Application of therapeutic gene transfer in the treatment of genetic diseases is a notable progress but there are some disadvantages and limitations in it. The process of overcoming these barriers is a drastic change in gene delivery. Recently, calcium phosphate nanoparticles alone, or in combination with viral and nonviral vectors, were found to have a positive effect on gene transfer especial...

متن کامل

Barriers and recent advances in non-viral vectors targeting the lungs for cystic fibrosis gene therapy

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in CFTR genes that affect chloride ion channel. The CF is a good nominee for gene therapy as the asymptomatic carriers are phenotypically normal, and the desired cells are accessible for vector delivery. Gene therapy shows promising effects involving the correction of gene or replacement of the mutant gene with the func...

متن کامل

Calcium Phosphate Nanoparticles a Novel Non-viral Gene Delivery System for Genetic Transformation of Tobacco

Nanotechnology plays a unique and novel role to develop new methods for genetic engineering. Calcium phosphate (CaP) has various significances in biomedical systems; one of them is plasmid DNA (pDNA) delivery for decades as transfection efficiency relative to the non-viral approaches. In this study, we developed a novel gene transfer carriers, nano-calcium-phosphate (CaP) that provides consiste...

متن کامل

Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles

Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP), the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been us...

متن کامل

Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and bioactivity of the transfection. We also intended to investigate the behavior of transfected cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of pharmaceutics

دوره 250 1  شماره 

صفحات  -

تاریخ انتشار 2003