H(+)/solute-induced intracellular acidification leads to selective activation of apical Na(+)/H(+) exchange in human intestinal epithelial cells.

نویسندگان

  • D T Thwaites
  • D Ford
  • M Glanville
  • N L Simmons
چکیده

The intestinal absorption of many nutrients and drug molecules is mediated by ion-driven transport mechanisms in the intestinal enterocyte plasma membrane. Clearly, the establishment and maintenance of the driving forces - transepithelial ion gradients - are vital for maximum nutrient absorption. The purpose of this study was to determine the nature of intracellular pH (pH(i)) regulation in response to H(+)-coupled transport at the apical membrane of human intestinal epithelial Caco-2 cells. Using isoform-specific primers, mRNA transcripts of the Na(+)/H(+) exchangers NHE1, NHE2, and NHE3 were detected by RT-PCR, and identities were confirmed by sequencing. The functional profile of Na(+)/H(+) exchange was determined by a combination of pH(i), (22)Na(+) influx, and EIPA inhibition experiments. Functional NHE1 and NHE3 activities were identified at the basolateral and apical membranes, respectively. H(+)/solute-induced acidification (using glycylsarcosine or beta-alanine) led to Na(+)-dependent, EIPA-inhibitable pH(i) recovery or EIPA-inhibitable (22)Na(+) influx at the apical membrane only. Selective activation of apical (but not basolateral) Na(+)/H(+) exchange by H(+)/solute cotransport demonstrates that coordinated activity of H(+)/solute symport with apical Na(+)/H(+) exchange optimizes the efficient absorption of nutrients and Na(+), while maintaining pH(i) and the ion gradients involved in driving transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flavonoids with epidermal growth factor-receptor tyrosine kinase inhibitory activity stimulate PEPT1-mediated cefixime uptake into human intestinal epithelial cells.

We have tested 33 flavonoids, occurring ubiquitously in foods of plant origin, for their ability to alter the transport of the beta-lactam antibiotic cefixime via the H+-coupled intestinal peptide transporter PEPT1 in the human intestinal epithelial cell line Caco-2. Of the flavonoids tested, quercetin, genistein, naringin, diosmin, acacetin, and chrysin increased uptake of [14C]cefixime dose d...

متن کامل

Polarization of adenosine effects on intracellular pH in A6 renal epithelial cells.

The effect of adenosine on Na+/H+ exchange activity was examined in cultured A6 renal epithelial cells. Adenosine and its analogue N6-cyclopentyladenosine (CPA) had different effects on Na+/H+ exchange activity depending on the side of addition. Basolateral CPA induced a stimulation of Na+/H+ exchange activity that was completely prevented by preincubation with an A2A-selective antagonist, 8-(3...

متن کامل

Cytoplasmic [Ca2+] and intracellular pH in lymphocytes. Role of membrane potential and volume-activated Na+/H+ exchange

The effect of elevating cytoplasmic Ca2+ [( Ca2+]i) on the intracellular pH (pHi) of thymic lymphocytes was investigated. In Na+-containing media, treatment of the cells with ionomycin, a divalent cation ionophore, induced a moderate cytoplasmic alkalinization. In the presence of amiloride or in Na+-free media, an acidification was observed. This acidification is at least partly due to H+ (equi...

متن کامل

Alveolar Epithelial Ion and Fluid Transport Polarity of alveolar epithelial cell acid-base permeability

Joseph, Dilip, Omar Tirmizi, Xiao-Ling Zhang, Edward D. Crandall, and Richard L. Lubman. Polarity of alveolar epithelial cell acid-base permeability. Am J Physiol Lung Cell Mol Physiol 282: L675–L683, 2002. First published November 30, 2001; 10.1152/ajplung.00330.2001.—We investigated acid-base permeability properties of electrically resistive monolayers of alveolar epithelial cells (AEC) grown...

متن کامل

Apical membrane Na+/H+ exchange in Necturus gallbladder epithelium. Its dependence on extracellular and intracellular pH and on external Na+ concentration

Intracellular microelectrode techniques and extracellular pH measurements were used to study the dependence of apical Na+/H+ exchange on mucosal and intracellular pH and on mucosal solution Na+ concentration ([Na+]o). When mucosal solution pH (pHo) was decreased in gallbladders bathed in Na(+)-containing solutions, aNai fell. The effect of pHo is consistent with titration of a single site with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 104 5  شماره 

صفحات  -

تاریخ انتشار 1999