Chalcogenide Glass Optical Waveguides for Infrared Biosensing

نویسندگان

  • Marie-Laure Anne
  • Julie Keirsse
  • Virginie Nazabal
  • Koji Hyodo
  • Satoru Inoue
  • Catherine Boussard-Plédel
  • Hervé Lhermite
  • Joël Charrier
  • Kiyoyuki Yanakata
  • Olivier Loréal
  • Jenny Le Person
  • Florent Colas
  • Chantal Compère
  • Bruno Bureau
چکیده

Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (bio)sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides.

Chalcogenide glass materials exhibit a variety of optical properties that make them desirable for near- and mid-infrared communications and sensing applications. However, processing limitations for these photorefractive materials have made the direct integration of waveguides with sources or detectors challenging. Here we demonstrate the viability of two complementary soft lithography methods f...

متن کامل

Rapid Prototyping of Planar Infrared Waveguides

A method for creating planar As2S3 waveguides with a minimum of processing steps is proposed, and the resulting waveguides have been characterized. When the processing parameters are optimized, the losses are low enough for practical use. The authors demonstrate this by creating serpentine waveguides with multiple bends and lengths in excess of 23cm. Keywords-component; chalcogenide glass; opti...

متن کامل

Chalcogenide Glass Materials for Integrated Infrared Photonics

Chalcogenide glasses (ChGs) are amorphous compounds containing the chalcogen elements (S, Se, Te) and exhibit wide infrared transparency windows. They are easy to synthesize in bulk and thin film forms and their compositional flexibility allows tuning of optical properties such as refractive index making them ideal for infrared photonics. We have studied the material attenuation in ChGs that ar...

متن کامل

Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides.

An etch-free and cost-effective deposition and patterning method to fabricate mid-infrared chalcogenide glass waveguides for chemical sensing applications is introduced. As(2)S(3) raised strip optical waveguides are produced by casting a liquid solution of As(2)S(3) glass in capillary channel molds formed by soft lithography. Mid-IR transmission is characterized by coupling the output of a quan...

متن کامل

Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow.

A thermal reflow technique is applied to high-index-contrast, sub-micron waveguides in As(2)S(3) chalcogenide glass to reduce the sidewall roughness and associated optical scattering loss. We show that the reflow process effectively decreases sidewall roughness of chalcogenide glass waveguides. A kinetic model is presented to quantitatively explain the sidewall roughness evolution during therma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009