Boosting algorithms for detector cascade learning

نویسندگان

  • Mohammad J. Saberian
  • Nuno Vasconcelos
چکیده

The problem of learning classifier cascades is considered. A new cascade boosting algorithm, fast cascade boosting (FCBoost), is proposed. FCBoost is shown to have a number of interesting properties, namely that it 1) minimizes a Lagrangian risk that jointly accounts for classification accuracy and speed, 2) generalizes adaboost, 3) can be made cost-sensitive to support the design of high detection rate cascades, and 4) is compatible with many predictor structures suitable for sequential decision making. It is shown that a rich family of such structures can be derived recursively from cascade predictors of two stages, denoted cascade generators. Generators are then proposed for two new cascade families, last-stage and multiplicative cascades, that generalize the two most popular cascade architectures in the literature. The concept of neutral predictors is finally introduced, enabling FCBoost to automatically determine the cascade configuration, i.e., number of stages and number of weak learners per stage, for the learned cascades. Experiments on face and pedestrian detection show that the resulting cascades outperform current state-of-the-art methods in both detection accuracy and speed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Instance Boosting for Object Detection

A good image object detection algorithm is accurate, fast, and does not require exact locations of objects in a training set. We can create such an object detector by taking the architecture of the Viola-Jones detector cascade and training it with a new variant of boosting that we call MILBoost. MILBoost uses cost functions from the Multiple Instance Learning literature combined with the AnyBoo...

متن کامل

Boosting Classifier Cascades

The problem of optimal and automatic design of a detector cascade is considered. A novel mathematical model is introduced for a cascaded detector. This model is analytically tractable, leads to recursive computation, and accounts for both classification and complexity. A boosting algorithm, FCBoost, is proposed for fully automated cascade design. It exploits the new cascade model, minimizes a L...

متن کامل

DOOMRED: A New Optimization Technique for Boosted Cascade Detectors on Enforced Training Set

We propose a new method to optimize the completely-trained boosted cascade detector on an enforced training set. Recently, due to the accuracy and real-time characteristics of boosted cascade detectors like the Adaboost, a lot of variant algorithms have been proposed to enhance the performance given a fixed number of training data. And, most of algorithms assume that a given training set well e...

متن کامل

Acceleration technique for boosting classification and its application to face detection

We propose an acceleration technique for boosting classification without any loss of classification accuracy and apply it to a face detection task. In classification task, much effort has been spent on improving the classification accuracy and the computational cost of training. In addition to them, the computational cost of classification itself can be critical in several applications includin...

متن کامل

Adaboost face detector based on Joint Integral Histogram and Genetic Algorithms for feature extraction process

Recently, many classes of objects can be efficiently detected by the way of machine learning techniques. In practice, boosting techniques are among the most widely used machine learning for various reasons. This is mainly due to low false positive rate of the cascade structure offering the possibility to be trained by different classes of object. However, it is especially used for face detectio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014