Targeted nanoparticles that deliver a sustained, specific release of Paclitaxel to irradiated tumors.

نویسندگان

  • Ralph J Passarella
  • Daniel E Spratt
  • Alice E van der Ende
  • John G Phillips
  • Hongmei Wu
  • Vasanth Sathiyakumar
  • Li Zhou
  • Dennis E Hallahan
  • Eva Harth
  • Roberto Diaz
چکیده

To capitalize on the response of tumor cells to XRT, we developed a controlled-release nanoparticle drug delivery system using a targeting peptide that recognizes a radiation-induced cell surface receptor. Phage display biopanning identified Gly-Ile-Arg-Leu-Arg-Gly (GIRLRG) as a peptide that selectively recognizes tumors responding to XRT. Membrane protein extracts of irradiated glioma cells identified glucose-regulated protein GRP78 as the receptor target for GIRLRG. Antibodies to GRP78 blocked the binding of GIRLRG in vitro and in vivo. Conjugation of GIRLRG to a sustained-release nanoparticle drug delivery system yielded increased paclitaxel concentration and apoptosis in irradiated breast carcinomas for up to 3 weeks. Compared with controls, a single administration of the GIRLRG-targeted nanoparticle drug delivery system to irradiated tumors delayed the in vivo tumor tripling time by 55 days (P = 0.0001) in MDA-MB-231 and 12 days in GL261 (P < 0.005). This targeting agent combines a novel recombinant peptide with a paclitaxel-encapsulating nanoparticle that specifically targets irradiated tumors, increasing apoptosis and tumor growth delay in a manner superior to known chemotherapy approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanomedicine – The role of newer drug delivery technologies in cancer

Nanotechnology has slowly but steadily revolutionized the diagnosis, imaging and treatment of cancer. Detecting cancer at earliest stages, locating the tumor at different areas in the body and specific delivery of the drugs to malignant cells including surgically inaccessible tumors are the core areas of medical and pharmaceutical research across the world. In this endeavour, Nanodevices have e...

متن کامل

Nanomedicine – The role of newer drug delivery technologies in cancer

Nanotechnology has slowly but steadily revolutionized the diagnosis, imaging and treatment of cancer. Detecting cancer at earliest stages, locating the tumor at different areas in the body and specific delivery of the drugs to malignant cells including surgically inaccessible tumors are the core areas of medical and pharmaceutical research across the world. In this endeavour, Nanodevices have e...

متن کامل

Investigation of drug release from paclitaxel loaded polylactic acid nanofibers

Objective(s): In this study, drug loaded electrospun nanofibrous mats were prepared and drug release and mechanism from prepared nanofibers were investigated.  Materials and Methods: Paclitaxel (PTX) loaded polylactic acid (PLA) nanofibers were prepared by electrospinning. The effects of process parameters, such as PTX concentration, tip to collector distance, voltage, temperature and flow rate...

متن کامل

Poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone coated Magnetic nanoparticles as a pH-responsive magnetic Nano-carrier for controlled delivery of antibiotics

Objective(s): Pharmaceutical industries are leading to improved medications that can target diseases more effectively and precisely. Researchers have intended to reformulate drugs so that they may be more safely used in human body. The more targeted a drug is, the lower its chance of triggering drug resistance, a cautionary concern surrounding the use of broad-spectrum antibiotics. The aim of t...

متن کامل

In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid-polymeric nanoparticles.

Following recent successes with percutaneous coronary intervention (PCI) for treating coronary artery disease (CAD), many challenges remain. In particular, mechanical injury from the procedure results in extensive endothelial denudation, exposing the underlying collagen IV-rich basal lamina, which promotes both intravascular thrombosis and smooth muscle proliferation. Previously, we reported th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 70 11  شماره 

صفحات  -

تاریخ انتشار 2010