Coumarin meets fluorescein: a Förster resonance energy transfer enhanced optical ammonia gas sensor.
نویسندگان
چکیده
This study focuses on the development of an optical ammonia gas sensor, the sensing mechanism of which is based on Förster resonance energy transfer (FRET) between coumarin and fluorescein. The dyes were immobilized into an organically modified silicate matrix during polymerizing methyltriethoxysilane with trifluoropropyltrimethoxysilane on a poly(methyl methacrylate) substrate. The resulting dye-doped xerogel films were exposed to different gaseous ammonia concentrations. A logarithmic decrease of the coumarin fluorescence emission band at 442 nm was observed with increasing gaseous ammonia concentrations, which was due to enhanced FRET between coumarin and fluorescein. The coumarin/fluorescein composition was optimized in order to obtain the best ammonia sensitivity. First experiments in a flow cell gas sensor setup demonstrated a sensitive and reversible response to gaseous ammonia.
منابع مشابه
Incorporation of a FRET dye pair into mesoporous materials: a comparison of fluorescence spectra, FRET activity and dye accessibility.
Fluorescein and rhodamine B modified mesoporous silica particles were synthesized by post-grafting and co-condensation approaches. The materials exhibited different pore size distributions, particle shapes and sizes. The materials were characterized by nitrogen sorption, scanning electron microscopy and fluorescence spectroscopy. The Förster resonance energy transfer between the selected dye pa...
متن کاملTheoretical Studies on Two-Photon Fluorescent Hg2+ Probes Based on the Coumarin-Rhodamine System
The development of fluorescent sensors for Hg2+ has attracted much attention due to the well-known adverse effects of mercury on biological health. In the present work, the optical properties of two newly-synthesized Hg2+ chemosensors based on the coumarin-rhodamine system (named Pro1 and Pro2) were systematically investigated using time-dependent density functional theory. It is shown that Pro...
متن کاملFörster resonance energy transfer among a structural isomer of adenine and various Coumarins inside a nanosized reverse micelle.
In this article we have studied Förster Resonance Energy Transfer (FRET) using 2-aminopurine (2-AP), a structural isomer of adenine as donor and various Coumarins as acceptors inside AROSOL-OT (AOT)-water reverse micelles (RM) using steady-state and time-resolved fluorescence spectroscopies. We have used three sets of FRET and all the pairs except 2-AP-Coumarin-480 exhibited quite efficient FRE...
متن کاملDiscovery of coumarin derivatives as fluorescence acceptors for intrinsic fluorescence resonance energy transfer of proteins.
Coumarin analogues were synthezised and evaluated as acceptors for the intrinsic fluorescence resonance energy transfer (iFRET) of tryptophan residues in target proteins. The fluorescence properties such as quantum yields, iFRET efficiencies, and Förster distances of the prepared coumarin analogs were determined in a model system, by their conjugation to biotin, utilizing streptavidin (SAV) as ...
متن کاملActivation Biosensor for G Protein-Coupled Receptors: A FRET-Based m1 Muscarinic Activation Sensor That Regulates Gq
We describe the design, construction and validation of a fluorescence sensor to measure activation by agonist of the m1 muscarinic cholinergic receptor, a prototypical class I G(q)-coupled receptor. The sensor uses an established general design in which Förster resonance energy transfer (FRET) from a circularly permuted CFP mutant to FlAsH, a selectively reactive fluorescein, is decreased 15-20...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 139 17 شماره
صفحات -
تاریخ انتشار 2014