Book spreads in PG(7, 2)

نویسندگان

  • Ronald Shaw
  • Svetlana Topalova
چکیده

An (n, q, r, s) book is a collection of r-subspaces in PG(n, q) called pages, which cover the whole projective space and intersect in a common s-subspace called the spine such that any point outside the spine is in exactly one page. An (n, q, r, s) book t-spread is a t-spread in PG(n, q) for which there exists an (n, q, r, s) book, such that the points of each page of this book and hence the points of the spine are partitioned by t-subspaces of the t-spread. We commence by showing that an (n, q, r, s) book t-spread exists if and only if the following three conditions hold: (i) (r − s)|(n − s), (ii) (t + 1)|(s + 1), (iii) (t + 1)|(r + 1). In general the number of different kinds of (n, q, r, s) book t-spreads is a tiny proportion of the number of different kinds of t-spreads in PG(n, q). In the rest of this paper we present computer-aided classification results for certain types of (7, 2, 5, 3) book 1-spreads. © 2014 Published by Elsevier B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic spreads from twisted fields

A ,yml'/eclic 'l'J"wd of PG(2n + l,q) is a spread of the symplectic polar space ~V(2n + l,q) defined by a nonsingular alternating bilinear form on a (2n+2)dimensional vector space over GF(q), i.e., a set of q"+l + 1 pairwise disjoint maximal totally isotropic subspaces. Note that a symplectic spread of PG(3, q) is equivalent, under the Klein correspondence, to an ovoid of the quadric Q( 4, q). ...

متن کامل

Minimal blocking sets in PG(2, 9)

We classify the minimal blocking sets of size 15 in PG(2, 9). We show that the only examples are the projective triangle and the sporadic example arising from the secants to the unique complete 6-arc in PG(2, 9). This classification was used to solve the open problem of the existence of maximal partial spreads of size 76 in PG(3, 9). No such maximal partial spreads exist [13]. In [14], also the...

متن کامل

Parallelisms of PG ( 3 , 4 ) with automorphisms of order 7

A spread is a set of lines of PG(d, q), which partition the point set. A parallelism is a partition of the set of lines by spreads. There is a one-to-one correspondence between the parallelisms of PG(3, 4) and the resolutions of the 2(85,5,1) design of its points and lines. We construct 482 non isomorphic parallelisms with automorphisms of order 7.

متن کامل

On the non-existence of a maximal partial spread of size 76 in PG(3, 9)

We prove the non-existence of maximal partial spreads of size 76 in PG(3, 9). Relying on the classification of the minimal blocking sets of size 15 in PG(2, 9) [22], we show that there are only two possibilities for the set of holes of such a maximal partial spread. The weight argument of Blokhuis and Metsch [3] then shows that these sets cannot be the set of holes of a maximal partial spread o...

متن کامل

On Maximal Partial Spreads in PG(n, q)

In this paper we construct maximal partial spreads in PG(3, q) which are a log q factor larger than the best known lower bound. For n ≥ 5 we also construct maximal partial spreads in PG(n, q) of each size between cnqn−2 log q and c′qn−1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 330  شماره 

صفحات  -

تاریخ انتشار 2014