Null-geodesics in Complex Conformal Manifolds and the Lebrun Correspondence

نویسنده

  • FLORIN ALEXANDRU BELGUN
چکیده

In the complex-Riemannian framework we show that a conformal manifold containing a compact, simply-connected, null-geodesic is conformally flat. In dimension 3 we use the LeBrun correspondence, that views a conformal 3-manifold as the conformal infinity of a selfdual four-manifolds. We also find a relation between the conformal invariants of the conformal infinity and its ambient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Gravitons, Null Geodesics, and Holomorphic Disks

We develop a global twistor correspondence for pseudo-Riemannian conformal structures of signature (++−−) with self-dual Weyl curvature. Near the conformal class of the standard indefinite product metric on S2 × S2, there is an infinitedimensional moduli space of such conformal structures, and each of these has the surprising global property that its null geodesics are all periodic. Each such c...

متن کامل

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

A Berger-green Type Inequality for Compact Lorentzian Manifolds

We give a Lorentzian metric on the null congruence associated with a timelike conformal vector field. A Liouville type theorem is proved and a boundedness for the volume of the null congruence, analogous to a well-known Berger-Green theorem in the Riemannian case, will be derived by studying conjugate points along null geodesics. As a consequence, several classification results on certain compa...

متن کامل

On the Weyl Tensor of a Self-dual Complex 4-manifold

We study complex 4-manifolds with holomorphic self-dual conformal structures, and we obtain an interpretation of the Weyl tensor of such a manifold as the projective curvature of a field of cones on the ambitwistor space. In particular, its vanishing is implied by the existence of some compact, simply-connected, null-geodesics. We also relate the Cotton-York tensor of an umbilic hypersurface to...

متن کامل

From Sasaki-Einstein spaces to quivers via BPS geodesics: Lp,q|r

The AdS/CFT correspondence between Sasaki-Einstein spaces and quiver gauge theories is studied from the perspective of massless BPS geodesics. The recently constructed toric L geometries are considered: we determine the dual superconformal quivers and the spectrum of BPS mesons. The conformal anomaly is compared with the volumes of the manifolds. The U(1)F×U(1)R global symmetry quantum numbers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000