A brief tour of R/qtl

نویسنده

  • Karl W Broman
چکیده

R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. It is implemented as an add-on package for the freely available and widely used statistical language/software R (see www.r-project.org). The development of this software as an add-on to R allows us to take advantage of the basic mathematical and statistical functions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of the QTL mapping software into a general statistical analysis program. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), HaleyKnott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). The fit of higher-order QTL models, with sophisticated techniques for model comparison and model search, will be incorporated soon. R/qtl is distributed as source code for Unix or compiled code for Windows or Mac OS X. R/qtl is released under the GNU General Public License. To download the software, you must agree to the terms in that license.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A shorter tour of R/qtl

4. The best way to get help on the functions and data sets in R (and in R/qtl) is via the html version of the help files. One way to get access to this is to type help.start() This should open a browser with the main help menu. If you then click on Packages→ qtl, you can see all of the available functions and datasets in R/qtl. For example, look at the help file for the function read.cross. An ...

متن کامل

Comparison of two QTL mapping approaches based on Bayesian inference using high-dense SNPs markers

To compare different QTL mapping methods, a population with genotypic and phenotypic data was simulated. In Bayesian approach, all information of markers can be used along with combination of distributions of SNP markers. It is assumed that most of the markers (95%) have minor effects and a few numbers of markers (5%) exert major effects. The simulated population included a basic population of ...

متن کامل

Identifying the Ethical Competencies of International Tour Guides

Background: International tour guides, as the front line of touristschr('39') treatment of the destination community, have a great impact on tourist satisfaction and improve the quality of travel, and moral competencies are important. The purpose of this study is to identify the components of ethical competencies of international tour guides. Method: For conducting research, a mixed method bas...

متن کامل

A Comparison of the Sensitivity of the BayesC and Genomic Best Linear Unbiased Prediction(GBLUP) Methods of Estimating Genomic Breeding Values under Different Quantitative Trait Locus(QTL) Model Assumptions

The objective of this study was to compare the accuracy of estimating and predicting breeding values using two diverse approaches, GBLUP and BayesC, using simulated data under different quantitative trait locus(QTL) effect distributions. Data were simulated with three different distributions for the QTL effect which were uniform, normal and gamma (1.66, 0.4). The number of QTL was assumed to be...

متن کامل

Effects of Marker Density, Number of Quantitative Trait Loci and Heritability of Trait on Genomic Selection Accuracy

The success of genomic selection mainly depends on the extent of linkage disequilibrium (LD) between markers and quantitative trait loci (QTL), number of QTL and heritability (h2) of the traits. The extent of LD depends on the genetic structure of the population and marker density. This study was conducted to determine the effects of marker density, level of heritability, number of QTL, and to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003