Flexible piezotronic strain sensor.

نویسندگان

  • Jun Zhou
  • Yudong Gu
  • Peng Fei
  • Wenjie Mai
  • Yifan Gao
  • Rusen Yang
  • Gang Bao
  • Zhong Lin Wang
چکیده

Strain sensors based on individual ZnO piezoelectric fine-wires (PFWs; nanowires, microwires) have been fabricated by a simple, reliable, and cost-effective technique. The electromechanical sensor device consists of a single electrically connected PFW that is placed on the outer surface of a flexible polystyrene (PS) substrate and bonded at its two ends. The entire device is fully packaged by a polydimethylsiloxane (PDMS) thin layer. The PFW has Schottky contacts at its two ends but with distinctly different barrier heights. The I- V characteristic is highly sensitive to strain mainly due to the change in Schottky barrier height (SBH), which scales linear with strain. The change in SBH is suggested owing to the strain induced band structure change and piezoelectric effect. The experimental data can be well-described by the thermionic emission-diffusion model. A gauge factor of as high as 1250 has been demonstrated, which is 25% higher than the best gauge factor demonstrated for carbon nanotubes. The strain sensor developed here has applications in strain and stress measurements in cell biology, biomedical sciences, MEMS devices, structure monitoring, and more.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A self-powered piezotronic strain sensor based on single ZnSnO3 microbelts†

We demonstrated a flexible self-powered system that consists of a strain sensor and a nanogenerator. An individual ZnSnO3 microbelt was bonded at its ends to a polyethylene terephthalate (PET) substrate to fabricate a strain sensor and a single-nanobelt nanogenerator. The sensor and nanogenerator were connected in series and packaged by a polydimethylsiloxane (PDMS) layer. The ZnSnO3 belongs to...

متن کامل

Enhanced performance of flexible ZnO nanowire based room-temperature oxygen sensors by piezotronic effect.

A flexible oxygen sensor based on individual ZnO nanowires is demonstrated with high sensitivity at room temperature and the influence of the piezotronic effect on the performance of this oxygen sensor is investigated. By applying a tensile strain, the already very high sensitivity due to the Schottky contact and pre-treatment of UV light is even further enhanced.

متن کامل

Piezotronic Effect: An Emerging Mechanism for Sensing Applications

Strain-induced polarization charges in a piezoelectric semiconductor effectively modulate the band structure near the interface and charge carrier transport. Fundamental investigation of the piezotronic effect has attracted broad interest, and various sensing applications have been demonstrated. This brief review discusses the fundamentals of the piezotronic effect, followed by a review highlig...

متن کامل

GaN nanobelt-based strain-gated piezotronic logic devices and computation.

Using the piezoelectric polarization charges created at the metal-GaN nanobelt (NB) interface under strain to modulate transport of local charge carriers across the Schottky barrier, the piezotronic effect is utilized to convert mechanical stimuli applied on the wurtzite-structured GaN NB into electronic controlling signals, based on which the GaN NB strain-gated transistors (SGTs) have been fa...

متن کامل

Nano-Newton transverse force sensor using a vertical GaN nanowire based on the piezotronic effect.

Semiconductor nanowires (NWs) have been researched as the building blocks for various nanosensors and devices, such as strain sensors, [ 1,2 ] photodetectors, [ 3 ] biosensors, [ 4 ] and gas sensors. [ 5 ] In recent years, wurtzite semiconductor NWs, such as ZnO, have been extensively investigated due to their piezoelectric properties. [ 6 ] With metal-semiconductor Schottky junctions, the elec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 8 9  شماره 

صفحات  -

تاریخ انتشار 2008