Classical Zariski Pairs

نویسندگان

  • Alex Degtyarev
  • ALEX DEGTYAREV
چکیده

We compute the fundamental groups of all irreducible plane sextics constituting classical Zariski pairs

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Graded Classical Prime Spectrum with the Zariski Topology as a Notherian Topological Space

Let G be a group with identity e. Let R be a G-graded commutative ring and let M be a graded R-module. The graded classical prime spectrum Cl.Specg(M) is defined to be the set of all graded classical prime submodule of M. The Zariski topology on Cl.Specg(M); denoted by ϱg. In this paper we establish necessary and sufficient conditions for Cl.Specg(M) with the Zariski topology to be a Noetherian...

متن کامل

On two problems concerning the Zariski topology of modules

Let $R$ be an associative ring and let $M$ be a left $R$-module.Let $Spec_{R}(M)$ be the collection of all prime submodules of $M$ (equipped with classical Zariski topology). There is a conjecture which says that every irreducible closed subset of $Spec_{R}(M)$ has a generic point. In this article we give an affirmative answer to this conjecture and show that if $M$ has a Noetherian spectrum, t...

متن کامل

Discrminantal Groups and Zariski Pairs of Sextic Curves

A series of Zariski pairs and four Zariski triplets were found by using lattice theory of K3 surfaces. There is a Zariski triplet of which one member is a deformation of another.

متن کامل

On Deformations of Singular Plane Sextics

We study complex plane projective sextic curves with simple singularities up to equisingular deformations. It is shown that two such curves are deformation equivalent if and only if the corresponding pairs are diffeomorphic. A way to enumerate all deformation classes is outlined, and a few examples are considered, including classical Zariski pairs; in particular, promising candidates for homeom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009