Review of robust multivariate statistical methods in high dimension.
نویسندگان
چکیده
General ideas of robust statistics, and specifically robust statistical methods for calibration and dimension reduction are discussed. The emphasis is on analyzing high-dimensional data. The discussed methods are applied using the packages chemometrics and rrcov of the statistical software environment R. It is demonstrated how the functions can be applied to real high-dimensional data from chemometrics, and how the results can be interpreted.
منابع مشابه
On Multivariate Methods in Robust Econometrics
This work studies implicitly weighted robust statistical methods suitable for econometric problems. We study robust estimation mainly for the context of heteroscedasticity or high dimension, which are up-to-date topics of current econometrics. We describe a modifi cation of linear regression resistant to heteroscedasticity and study its computational aspects. For a robust version of the instrum...
متن کاملRobust tools for the imperfect world
Data outliers or other data inhomogeneities lead to a violation of the assumptions of traditional statistical estimators and methods. Robust statistics offers tools that can reliably work with contaminated data. Here, outlier detection methods in low and high dimension, as well as important robust estimators and methods for multivariate data are reviewed, and the most important references to th...
متن کاملHighly Robust Statistical Methods in Medical Image Analysis
Standard multivariate statistical methods in medical applications are too sensitive to the assumption of multivariate normality and the presence of outliers in the data. This paper is devoted to robust statistical methods. In the context of medical image analysis they allow to solve the tasks of face detection and face recognition in a database of images. The results of the robust approaches in...
متن کاملGENETIC PROGRAMMING AND MULTIVARIATE ADAPTIVE REGRESION SPLINES FOR PRIDICTION OF BRIDGE RISKS AND COMPARISION OF PERFORMANCES
In this paper, two different data driven models, genetic programming (GP) and multivariate adoptive regression splines (MARS), have been adopted to create the models for prediction of bridge risk score. Input parameters of bridge risks consists of safe risk rating (SRR), functional risk rating (FRR), sustainability risk rating (SUR), environmental risk rating (ERR) and target output. The total ...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytica chimica acta
دوره 705 1-2 شماره
صفحات -
تاریخ انتشار 2011