Network architecture, receptive fields, and neuromodulation: computational and functional implications of cholinergic modulation in primary auditory cortex.
نویسندگان
چکیده
Two fundamental issues in auditory cortical processing are the relative importance of thalamocortical versus intracortical circuits in shaping response properties in primary auditory cortex (ACx), and how the effects of neuromodulators on these circuits affect dynamic changes in network and receptive field properties that enhance signal processing and adaptive behavior. To investigate these issues, we developed a computational model of layers III and IV (LIII/IV) of AI, constrained by anatomical and physiological data. We focus on how the local and global cortical architecture shape receptive fields (RFs) of cortical cells and on how different well-established cholinergic effects on the cortical network reshape frequency-tuning properties of cells in ACx. We identify key thalamocortical and intracortical circuits that strongly affect tuning curves of model cortical neurons and are also sensitive to cholinergic modulation. We then study how differential cholinergic modulation of network parameters change the tuning properties of our model cells and propose two different mechanisms: one intracortical (involving muscarinic receptors) and one thalamocortical (involving nicotinic receptors), which may be involved in rapid plasticity in ACx, as recently reported in a study by Fritz and coworkers.
منابع مشابه
Cholinergic modulation of responses to single tones produces tone-specific receptive field alterations in cat auditory cortex.
Acetylcholine (ACh), acting via muscarinic receptors, is known to modulate neuronal responsiveness in primary sensory neocortex. The administration of ACh to cortical neurons facilitates or suppresses responses to sensory stimuli, and these effects can endure well beyond the period of ACh application. In the present study, we sought to determine whether ACh produces a general change in sensory ...
متن کاملPharmacological modulation of learning-induced plasticity in human auditory cortex.
PURPOSE Converging evidence from animals and humans indicate that the primary auditory cortex is continuously reshaped in an experience-dependent way. Reorganisation in primary auditory cortex can be observed at the level of receptive fields, topographic maps and brain activations measured with neuroimaging methods. Several neuromodulatory systems were shown to contribute to such an experience-...
متن کاملCholinergic Neuromodulation Controls Directed Temporal Communication in Neocortex in Vitro
Acetylcholine is the primary neuromodulator involved in cortical arousal in mammals. Cholinergic modulation is involved in conscious awareness, memory formation and attention - processes that involve intercommunication between different cortical regions. Such communication is achieved in part through temporal structuring of neuronal activity by population rhythms, particularly in the beta and g...
متن کاملCharacterizing Neurons in the Primary Auditory Cortex of the Awake Primate Using Reverse Correlation
While the understanding of the functional role of different classes of neurons in the awake primary visual cortex has been extensively studied since the time of Hubel and Wiesel (Hubel and Wiesel, 1962), our understanding of the feature selectivity and functional role of neurons in the primary auditory cortex is much farther from complete. Moving bars have long been recognized as an optimal sti...
متن کاملNetwork Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons
Cortical sensory neurons are commonly characterized using the receptive field, the linear dependence of their response on the stimulus. In primary auditory cortex neurons can be characterized by their spectrotemporal receptive fields, the spectral and temporal features of a sound that linearly drive a neuron. However, receptive fields do not capture the fact that the response of a cortical neur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 96 6 شماره
صفحات -
تاریخ انتشار 2006