The Tsunami of 26 December, 2004: Numerical Modeling and Energy Considerations
نویسندگان
چکیده
A numerical model for the global tsunamis computation constructed by KOWALIK et al. (2005), is applied to the tsunami of 26 December, 2004 in the World Ocean from 80 S to 69 N with spatial resolution of one minute. Because the computational domain includes close to 200 million grid points, a parallel version of the code was developed and run on a Cray X1 supercomputer. An energy flux function is used to investigate energy transfer from the tsunami source to the Atlantic and Pacific Oceans. Although the first energy input into the Pacific Ocean was the primary (direct) wave, reflections from the Sri Lankan and eastern shores of Maldives were a larger source. The tsunami traveled from Indonesia, around New Zealand, and into the Pacific Ocean by various routes. The direct path through the deep ocean to North America carried miniscule energy, while the stronger signal traveled a considerably longer distance via South Pacific ridges as these bathymetric features amplified the energy flux vectors. Travel times for these amplified energy fluxes are much longer than the arrival of the first wave. These large fluxes are organized in the wave-like form when propagating between Australia and Antarctica. The sources for the larger fluxes are multiple reflections from the Seychelles, Maldives and a slower direct signal from the Bay of Bengal. The energy flux into the Atlantic Ocean shows a different pattern since the energy is pumped into this domain through the directional properties of the source function. The energy flow into the Pacific Ocean is approximately 75% of the total flow to the Atlantic Ocean. In many locations along the Pacific and Atlantic coasts, the first arriving signal, or forerunner, has lower amplitude than the main signal which often is much delayed. Understanding this temporal distribution is important for an application to tsunami warning and prediction.
منابع مشابه
How Numerical Simulations May Contribute to Tsunami Risk Preparedness: The 26 December 2004 Indian Ocean Event and the Thailand Case Study
The tsunami information, i.e. the sea level elevation, presents useful features that can be used for different case studies. It can be derived from observations, e.g. tide gages records or anomaly of sea level obtained with altimeters, but also through numerical modeling of the tsunami propagation. Once a robust numerical simulation is performed, the wave sequence, compared to available hydrody...
متن کاملModeling the 26 December 2004 Indian Ocean tsunami: Case study of impact in Thailand
[1] The devastating 26 December 2004 Indian Ocean tsunami stressed the need for assessing tsunami hazard in vulnerable coastal areas. Numerical modeling is but one important tool for understanding past tsunami events and simulating future ones. Here we present a robust simulation of the event, which explains the large runups and destruction observed in coastal Thailand and identifies areas vuln...
متن کاملNumerical Modeling of Tsunami Waves Associated With Worst Earthquake Scenarios of the Makran Subduction Zone in the Jask Port, Iran
The recent studies show that the past researches may have significantly underestimated earthquake and tsunami hazard in the Makran Subduction Zone (MSZ) and this region is potentially capable of producing major earthquakes. In this study, the worst case possible earthquake scenarios of the MSZ are simulated using fully nonlinear boussinesq model to investigate tsunami hazards on the Jask Port, ...
متن کاملNumerical Simulation of the December 26, 2004: Indian Ocean Tsunami
The December 26, 2004 tsunami is one of the most devastating tsunami in recorded history. It was generated in the Indian Ocean off the western coast of northern Sumatra, Indonesia at 0:58:53 (GMT) by one of the largest earthquake of the century with a moment magnitude of Mw = 9.3. In the study, we focus on a best-fitted tsunami source for tsunami modeling based on geophysical and seismological ...
متن کاملSource Constraints and Model Simulation of the December 26, 2004, Indian Ocean Tsunami
The December 26, 2004 tsunami was perhaps the most devastating tsunami in recorded history, causing over 200,000 fatalities and widespread destruction in countries bordering the Indian Ocean. It was generated by the third largest earthquake on record Mw=9.1–9.3 and was a truly global event, with significant wave action felt around the world. Many measurements of this event were made with seismo...
متن کامل