Shelf life stability comparison in air for solution processed pristine PDPP3T polymer and doped spiro-OMeTAD as hole transport layer for perovskite solar cell
نویسندگان
چکیده
This data in brief includes forward and reverse scanned current density-voltage (J-V) characteristics of perovskite solar cells with PDPP3T and spiro-OMeTAD as HTL, stability testing conditions of perovskite solar cell shelf life in air for both PDPP3T and spiro-OMeTAD as HTL as per the description in Ref. [1], and individual J-V performance parameters acquired with increasing time exposed in ambient air are shown for both type of devices using PDPP3T and spiro-OMeTAD as HTL. The data collected in this study compares the device stability with time for both PDPP3T and spiro-OMeTAD based perovskite solar cells and is directly related to our research article "solution processed pristine PDPP3T polymer as hole transport layer for efficient perovskite solar cells with slower degradation" [2].
منابع مشابه
Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering
We fabricated perovskite solar cells using a triple-layer of n-type doped, intrinsic, and p-type doped 2,2',7,7'-tetrakis(N,N'-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) (n-i-p) as hole transport layer (HTL) by vacuum evaporation. The doping concentration for n-type doped spiro-OMeTAD was optimized to adjust the highest occupied molecular orbital of spiro-OMeTAD to match the v...
متن کاملInvestigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells
Abstract: Perovskite solar cells have become an attractive subject in the solar energydevice area. During ten years of development, the energy conversion efficiency has beenimproved from 2.2% to more than 22%, and it still has a very good potential for furtherenhancement. In this paper, a numerical model of the perovskite solar cell with thestructure of glass/ FTO/ TiO2/...
متن کاملHierarchically Structured Hole Transport Layers of Spiro-OMeTAD and Multiwalled Carbon Nanotubes for Perovskite Solar Cells.
The low electrical conductivity of spiro-OMeTAD hole transport layers impedes further enhancements of the power conversion efficiency (PCE) of perovskite solar cells. We embedded multiwalled carbon nanotubes (MWNTs) in spiro-OMeTAD (spiro-OMeTAD/MWNTs) to increase carrier mobility and conductivity. However, direct electrical contact between CH3 NH3 PbI3 and the MWNTs created pathways for undesi...
متن کاملSolution-Processed Cu(In, Ga)(S, Se)2 Nanocrystal as Inorganic Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells
Perovskite solar cells are emerging as one of the most promising candidates for solar energy harvesting. To date, most of the high-performance perovskite solar cells have exclusively employed organic hole-transporting materials (HTMs) such as 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) or polytriarylamine (PTAA) which are often expensive and have low hol...
متن کاملSpiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering.
We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9'-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD's paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the ho...
متن کامل