Loss of photic entrainment and altered free-running circadian rhythms in math5-/- mice.
نویسندگان
چکیده
Mammalian free-running circadian rhythms are entrained to the external light/dark cycle by photic signaling to the suprachiasmatic nuclei via the retinohypothalamic tract (RHT). We investigated the circadian entrainment and clock properties of math5-/- mutant mice. math5 is a critical regulator of retinal ganglion cell development; math5-/- mice show severe optic nerve hypoplasia. By anterograde cholera toxin B tracing, we find that math5-/- mice do not develop an identifiable RHT pathway. This appears to be attributable to agenesis or dysgenesis of the majority of RHT-projecting retinal ganglion cells. math5-/- mice display free-running circadian rhythms with a period approximately 1 hr longer than B6/129 controls (24.43 +/- 0.10 vs 23.62 +/- 0.19 hr; p < 0.00001). The free-running period of heterozygote mice is indistinguishable from that of controls. math5-/- mice show no entrainment to light/dark cycles, whereas heterozygote mice show normal entrainment to both 12 hr light/dark cycles and to a 1 hr skeletal photoperiod. math5-/- mice show reduced ability to entrain their rhythms to the nonphotic time cue of restricted running wheel access but demonstrate both free-running behavior and entrained anticipation of wheel unlocking in these conditions, suggesting the presence of a second diurnal oscillatory system in math5-/- animals. These results demonstrate that retinal ganglion cell input is not necessary for the development of a free-running circadian timekeeping system in the suprachiasmatic nucleus but is important for both photic entrainment and determination of the free-running period.
منابع مشابه
Vitamin B12 affects non-photic entrainment of circadian locomotor activity rhythms in mice.
Administration of vitamin B12 (VB12) has been reported to normalize human sleep-wake rhythm disorders such as non-24-h sleep-wake syndrome (HNS), delayed sleep phase syndrome (DSPS) or insomnia. However, the mechanisms of the action of VB12 on the rhythm disorders are unknown. In the present study, therefore, effects of VB12 on circadian rhythms of locomotor activity were examined in mice. In t...
متن کاملEffect of 192 IgG-saporin on circadian activity rhythms, expression of P75 neurotrophin receptors, calbindin-D28K, and light-induced Fos in the suprachiasmatic nucleus in rats.
Photic entrainment of circadian rhythms in mammals is mediated through a direct retinal projection to the core region of the suprachiasmatic nucleus (SCN), the circadian clock. A proportion of this projection contains the low-affinity p75 neurotrophic receptor (p75NTR). Neonatal monosodium glutamate (MSG) treatment, which dramatically reduces p75NTR immunoreactivity in the SCN has no impact on ...
متن کاملTemporally restricted role of retinal PACAP: integration of the phase-advancing light signal to the SCN.
Circadian rhythms in physiology and behavior are temporally synchronized to the day/night cycle through the action of light on the circadian clock. In mammals, transduction of the photic signal reaching the circadian oscillator in the suprachiasmatic nucleus (SCN) occurs through the release of glutamate and pituitary adenylate cyclase-activating peptide (PACAP). The authors' study aimed at clar...
متن کاملThe role of the intergeniculate leaflet in entrainment of circadian rhythms to a skeleton photoperiod.
Mammalian circadian rhythms are synchronized to environmental light/dark (LD) cycles via daily phase resetting of the circadian clock in the suprachiasmatic nucleus (SCN). Photic information is transmitted to the SCN directly from the retina via the retinohypothalamic tract (RHT) and indirectly from the retinorecipient intergeniculate leaflet (IGL) via the geniculohypothalamic tract (GHT). The ...
متن کاملDark adaptation in the circadian system of the mouse.
Entrainment of circadian rhythms by zeitgebers is generally believed to conform to the principles of the so-called nonparametric theory of entrainment. Although seldom recognized, this theory presupposes that the response of the circadian system to photic stimulation is dependent on previous photic stimulation. The process of dark adaptation in the circadian system has been investigated previou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 23 شماره
صفحات -
تاریخ انتشار 2002