Histological distribution of class III alcohol dehydrogenase in human brain.

نویسندگان

  • O Mori
  • T Haseba
  • K Kameyama
  • H Shimizu
  • M Kudoh
  • O Ohaki
  • Y Arai
  • M Yamazaki
  • G Asano
چکیده

The distributions of class III alcohol dehydrogenase (ADH), a glutathione-dependent formaldehyde dehydrogenase, and class I ADH in the human brain were examined immunohistochemically. The most intense immunostaining of class III ADH was observed in the dendrites and cytoplasm of cerebellar Purkinje cells. Scattered cerebral cortical neurons in layers IV and V, and some hippocampal pyramidal neurons were also immunopositive. The neuronal distribution of class III ADH resembled that of the vulnerable neurons in patients with hypoxic encephalopathy, which in view of the intense staining in the Purkinje cells, raises the possibility that this enzyme contributes to the hypoxia and cerebellar degeneration suffered by chronic alcoholics. Perivascular and subependymal astrocytes, which contribute to the maintenance of the cerebral cellular milieu and isolate the brain from the systemic circulation and cerebrospinal fluid, were also class III ADH positive. As the substrates of this enzyme include intrinsic toxic formaldehyde, inflammatory intermediate of 20-hydroxy-leukoteiene B4, and possibly ethanol, the distribution of class III ADH immunostaining indicates this enzyme contributes to the defence of the brain against degenerative processes. The finding that, unlike ependymal cells, subependymal astrocytes were class III ADH positive, suggests this enzyme may be useful for differentiating astrocytes and ependymal cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of class I, III and IV alcohol dehydrogenase mRNAs in the adult rat, mouse and human brain.

The localization of different classes of alcohol dehydrogenases (ADH) in the brain is of great interest because of their role in both ethanol and retinoic acid metabolism. Conflicting data have been reported in the literature. By Northern blot and enzyme activity analyses only class III ADH has been detected in adult brain specimens, while results from riboprobe in situ hybridization indicate c...

متن کامل

Alcohol dehydrogenase in human tissues: localisation of transcripts coding for five classes of the enzyme.

Tissue distribution of the five identified classes of human alcohol dehydrogenase was studied by assessment of mRNA levels in 23 adult and four fetal tissues. Alcohol dehydrogenase of class I was found in most tissues, brain and placenta excluded, but expression levels among tissues differed widely. The distribution pattern of class III transcripts was consistent with those of housekeeping enzy...

متن کامل

Histological and Biochemical Alterations in the Superior Colliculus and Lateral Geniculate Nucleus of Juvenile Rats Following Prenatal Exposure to Marijuana Smoke

Prenatal exposure to marijuana has been associated with a variety of brain deficits, as Δ9-tetrahydrocannabinol (THC), its main active ingredient crosses the placenta and affects foetal brain development. Despite this effect, marijuana remains a commonly abused substance among pregnant women. In the current study, we examined the histological and biochemical changes in the superior colliculus (...

متن کامل

Mutation of Arg-115 of human class III alcohol dehydrogenase: a binding site required for formaldehyde dehydrogenase activity and fatty acid activation.

The origin of the fatty acid activation and formaldehyde dehydrogenase activity that distinguishes human class III alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) from all other alcohol dehydrogenases has been examined by site-directed mutagenesis of its Arg-115 residue. The Ala- and Asp-115 mutant proteins were expressed in Escherichia coli and purified by affinity chromatograp...

متن کامل

Origin of the human alcohol dehydrogenase system: implications from the structure and properties of the octopus protein.

In contrast to the multiplicity of alcohol dehydrogenase in vertebrates, a class III type of the enzyme [i.e., a glutathione-dependent formaldehyde dehydrogenase; formaldehyde; NAD+ oxidoreductase (glutathione-formylating), EC 1.2.1.1.] is the only form detectable in appreciable yield in octopus. It is enzymatically and structurally highly similar to the human class III enzyme, with limited ove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 852 1  شماره 

صفحات  -

تاریخ انتشار 2000