Eigenvalues of Euclidean random matrices

نویسنده

  • Charles Bordenave
چکیده

We study the spectral measure of large Euclidean random matrices. The entries of these matrices are determined by the relative position of n random points in a compact set Ωn of R. Under various assumptions we establish the almost sure convergence of the limiting spectral measure as the number of points goes to infinity. The moments of the limiting distribution are computed, and we prove that the limit of this limiting distribution as the density of points goes to infinity has a nice expression. We apply our results to the adjacency matrix of the geometric graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the eigenvalues of Euclidean distance matrices

In this paper, the notion of equitable partitions (EP) is used to study the eigenvalues of Euclidean distance matrices (EDMs). In particular, EP is used to obtain the characteristic polynomials of regular EDMs and non-spherical centrally symmetric EDMs. The paper also presents methods for constructing cospectral EDMs and EDMs with exactly three distinct eigenvalues. Mathematical subject classif...

متن کامل

On Euclidean random matrices in high dimension

In this note, we study the n×n random Euclidean matrix whose entry (i, j) is equal to f(‖Xi−Xj‖) for some function f and the Xi’s are i.i.d. isotropic vectors inR. In the regime where n and p both grow to infinity and are proportional, we give some sufficient conditions for the empirical distribution of the eigenvalues to converge weakly. We illustrate our result on log-concave random vectors.

متن کامل

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

APPLICATION OF THE RANDOM MATRIX THEORY ON THE CROSS-CORRELATION OF STOCK ‎PRICES

The analysis of cross-correlations is extensively applied for understanding of interconnections in stock markets. Variety of methods are used in order to search stock cross-correlations including the Random Matrix Theory (RMT), the Principal Component Analysis (PCA) and the Hierachical ‎Structures.‎ In ‎this work‎, we analyze cross-crrelations between price fluctuations of 20 ‎company ‎stocks‎...

متن کامل

Statistical Behavior of the Eigenvalues of Random Matrices

This paper will investigate the statistical behavior of the eigenvalues of real symmetric random matrices. In particular, we shall be interested in the spacings s between adjacent eigenvalues. Let P (s) be the distribution of these spacings, in the limit of matrices of large dimension. Empirical evidence suggests that, for a large class of random matrices, P (s) is given approximately by the “W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2008