THE WEIGHT IN A SERRE-TYPE CONJECTURE FOR TAME n-DIMENSIONAL GALOIS REPRESENTATIONS

نویسنده

  • FLORIAN HERZIG
چکیده

We formulate a Serre-type conjecture for n-dimensional Galois representations that are tamely ramified at p. The weights are predicted using a representation-theoretic recipe. For n = 3 some of these weights were not predicted by the previous conjecture of Ash, Doud, Pollack, and Sinnott. Computational evidence for these extra weights is provided by calculations of Doud and Pollack. We obtain theoretical evidence for n = 4 using automorphic inductions of Hecke characters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serre Weights and Breuil’s Lattice Conjecture in Dimension Three

We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a U(3)-arithmetic manifold is purely local, i.e., only depends on the Galois representation at places above p. This is a generalization to GL3 of the lattice conjecture of Breuil. In the process, we also prove the geometric Breuil-Mézard conjecture for (tamely) potentially crystalline deformati...

متن کامل

Supersingular Galois Representations and a Generalization of a Conjecture of Serre

Serre’s conjecture relates two-dimensional odd irreducible Galois representations over F̄p to modular forms. We discuss a generalization of this conjecture to higher-dimensional Galois representations. In particular, for n-dimensional Galois representations which are irreducible when restricted to the decomposition group at p, we strengthen a conjecture of Ash, Doud, and Pollack. We then give co...

متن کامل

On Serre’s Conjecture for Mod ` Galois Representations over Totally Real Fields

In 1987 Serre conjectured that any mod ` two-dimensional irreducible odd representation of the absolute Galois group of the rationals came from a modular form in a precise way. We present a generalisation of this conjecture to 2-dimensional representations of the absolute Galois group of a totally real field where ` is unramified. The hard work is in formulating an analogue of the “weight” part...

متن کامل

ON SERRE’S CONJECTURE FOR MOD l GALOIS REPRESENTATIONS OVER TOTALLY REAL FIELDS

In 1987 Serre conjectured that any mod l two-dimensional irreducible odd representation of the absolute Galois group of the rationals came from a modular form in a precise way. We present a generalisation of this conjecture to 2-dimensional representations of the absolute Galois group of a totally real field where l is unramified. The hard work is in formulating an analogue of the “weight” part...

متن کامل

Wildly Ramified Galois Representations and a Generalization of a Conjecture of Serre

Serre’s conjecture relates two-dimensional odd irreducible characteristic p representations to modular forms. We discuss a generalization of this conjecture (due to Ash and Sinnott) to higher-dimensional Galois representations. In particular, we give a refinement of the conjecture in the case of wildly ramified Galois representations and we provide computational evidence for this refinement.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006