Co-Utilization of Glucose and Xylose for Enhanced Lignocellulosic Ethanol Production with Reverse Membrane Bioreactors

نویسندگان

  • Mofoluwake M. Ishola
  • Päivi Ylitervo
  • Mohammad J. Taherzadeh
  • James McGrath
چکیده

Integrated permeate channel (IPC) flat sheet membranes were examined for use as a reverse membrane bioreactor (rMBR) for lignocellulosic ethanol production. The fermenting organism, Saccharomyces cerevisiae (T0936), a genetically-modified strain with the ability to ferment xylose, was used inside the rMBR. The rMBR was evaluated for simultaneous glucose and xylose utilization as well as in situ detoxification of furfural and hydroxylmethyl furfural (HMF). The synthetic medium was investigated, after which the pretreated wheat straw was used as a xylose-rich lignocellulosic substrate. The IPC membrane panels were successfully used as the rMBR during the batch fermentations, which lasted for up to eight days without fouling. With the rMBR, complete glucose and xylose utilization, resulting in 86% of the theoretical ethanol yield, was observed with the synthetic medium. Its application with the pretreated wheat straw resulted in complete glucose consumption and 87% xylose utilization; a final ethanol concentration of 30.3 g/L was obtained, which corresponds to 83% of the theoretical yield. Moreover, complete in situ detoxification of furfural and HMF was obtained within 36 h and 60 h, respectively, with the rMBR. The use of the rMBR is a promising technology for large-scale lignocellulosic ethanol production, since it facilitates the co-utilization of glucose and xylose; moreover, the technology also allows the reuse of the yeast for several batches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering a wild-type diploid Saccharomyces cerevisiae strain for second-generation bioethanol production

BACKGROUND The cost-effective production of second-generation bioethanol, which is made from lignocellulosic materials, has to face the following two problems: co-fermenting xylose with glucose and enhancing the strain's tolerance to lignocellulosic inhibitors. Based on our previous study, the wild-type diploid Saccharomyces cerevisiae strain BSIF with robustness and good xylose metabolism gene...

متن کامل

Genetic engineering for improved xylose fermentation by yeasts.

Xylose utilization is essential for the efficient conversion of lignocellulosic materials to fuels and chemicals. A few yeasts are known to ferment xylose directly to ethanol. However, the rates and yields need to be improved for commercialization. Xylose utilization is repressed by glucose which is usually present in lignocellulosic hydrolysates, so glucose regulation should be altered in orde...

متن کامل

Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme.

Xylose, which is a major constituent of lignocellulosic biomass, was utilized for the production of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], having transparent and flexible properties. The recombinant Escherichia coli JW0885 (pflA(-)) expressing LA-polymerizing enzyme (LPE) and monomer supplying enzymes grown on xylose produced a copolymer having a higher LA fraction (34mol%) than tha...

متن کامل

Prefermentation improves xylose utilization in simultaneous saccharification and co-fermentation of pretreated spruce

BACKGROUND Simultaneous saccharification and fermentation (SSF) is a promising process option for ethanol production from lignocellulosic materials. However, both the overall ethanol yield and the final ethanol concentration in the fermentation broth must be high. Hence, almost complete conversion of both hexoses and pentoses must be achieved in SSF at a high solid content. A principal difficul...

متن کامل

DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast

Lignocellulosic biomass, which contains large amounts of glucose and xylose, is the new ideal feedstock for ethanol production used as renewable liquid fuel for transportation. The naturally occurring Saccharomyces yeasts traditionally used for industrial ethanol production are unable to ferment xylose. We have successfully developed genetically engineered Saccharomyces yeasts that can effectiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015