Reducing statistical dependencies in natural signals using radial Gaussianization

نویسندگان

  • Siwei Lyu
  • Eero P. Simoncelli
چکیده

We consider the problem of transforming a signal to a representation in which the components are statistically independent. When the signal is generated as a linear transformation of independent Gaussian or non-Gaussian sources, the solution may be computed using a linear transformation (PCA or ICA, respectively). Here, we consider a complementary case, in which the source is non-Gaussian but elliptically symmetric. Such a source cannot be decomposed into independent components using a linear transform, but we show that a simple nonlinear transformation, which we call radial Gaussianization (RG), is able to remove all dependencies. We apply this methodology to natural signals, demonstrating that the joint distributions of nearby bandpass filter responses, for both sounds and images, are closer to being elliptically symmetric than linearly transformed factorial sources. Consistent with this, we demonstrate that the reduction in dependency achieved by applying RG to either pairs or blocks of bandpass filter responses is significantly greater than that achieved by PCA or ICA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Extraction of Independent Components of Natural Images Using Radial Gaussianization

We consider the problem of efficiently encoding a signal by transforming it to a new representation whose components are statistically independent. A widely studied linear solution, known as independent component analysis (ICA), exists for the case when the signal is generated as a linear transformation of independent nongaussian sources. Here, we examine a complementary case, in which the sour...

متن کامل

Divisive Normalization: Justification and Effectiveness as Efficient Coding Transform

Divisive normalization (DN) has been advocated as an effective nonlinear efficient coding transform for natural sensory signals with applications in biology and engineering. In this work, we aim to establish a connection between the DN transform and the statistical properties of natural sensory signals. Our analysis is based on the use of multivariate t model to capture some important statistic...

متن کامل

Gaussianization

High dimensional data modeling is difficult mainly because the so-called "curse of dimensionality". We propose a technique called "Gaussianization" for high dimensional density estimation, which alleviates the curse of dimensionality by exploiting the independence structures in the data. Gaussianization is motivated from recent developments in the statistics literature: projection pursuit, inde...

متن کامل

Density Modeling of Images using a Generalized Normalization Transformation

We introduce a parametric nonlinear transformation that is well-suited for Gaussianizing data from natural images. The data are linearly transformed, and each component is then normalized by a pooled activity measure, computed by exponentiating a weighted sum of rectified and exponentiated components and a constant. We optimize the parameters of the full transformation (linear transform, expone...

متن کامل

Power spectra of the natural input to the visual system

The efficient coding hypothesis posits that sensory systems are adapted to the regularities of their signal input so as to reduce redundancy in the resulting representations. It is therefore important to characterize the regularities of natural signals to gain insight into the processing of natural stimuli. While measurements of statistical regularity in vision have focused on photographic imag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in neural information processing systems

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008