Zero-Shot Deep Domain Adaptation

نویسندگان

  • Kuan-Chuan Peng
  • Ziyan Wu
  • Jan Ernst
چکیده

Current state-of-the-art approaches in domain adaptation and fusion show promising results with either labeled or unlabeled task-relevant target-domain training data. However, the fact that the task-relevant target-domain training data can be unavailable is often ignored by the prior works. To tackle this issue, instead of using the task-relevant target-domain training data, we propose zeroshot deep domain adaptation (ZDDA) which learns the privileged information from the task-irrelevant dual-domain pairs. ZDDA first learns a source-domain representation which is not only suitable for the task of interest but also close to a given general target-domain representation. Afterwards, ZDDA performs domain fusion by simulating the task-relevant target-domain representations with the task-relevant source-domain data. In a scene classification task from the SUN RGB-D dataset [11], our proposed method outperforms the baselines of domain adaptation and fusion, being the first published domain adaptation and fusion method which needs no task-relevant target-domain training data. We will validate our method on other tasks and/or domains in the follow-up report.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-Shot Fine-Grained Classification by Deep Feature Learning with Semantics

Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task due to two main issues: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e. ...

متن کامل

DARLA: Improving Zero-Shot Transfer in Reinforcement Learning

Domain adaptation is an important open problem in deep reinforcement learning (RL). In many scenarios of interest data is hard to obtain, so agents may learn a source policy in a setting where data is readily available, with the hope that it generalises well to the target domain. We propose a new multi-stage RL agent, DARLA (DisentAngled Representation Learning Agent), which learns to see befor...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Zero-Shot Domain Adaptation: A Multi-View Approach

Domain adaptation algorithms attempt to address situations where our training (source) data distribution and test (target) data distribution differ, potentially by a substantial amount. For example, in a natural language processing task there may be many important phrases in our target genre which are required for low target error but do not occur in our source training set or even have support...

متن کامل

Hard Negative Mining for Metric Learning Based Zero-Shot Classification

Zero-Shot learning has been shown to be an efficient strategy for domain adaptation. In this context, this paper builds on the recent work of Bucher et al. [1], which proposed an approach to solve ZeroShot classification problems (ZSC) by introducing a novel metric learning based objective function. This objective function allows to learn an optimal embedding of the attributes jointly with a me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.01922  شماره 

صفحات  -

تاریخ انتشار 2017