Magnetostriction of Ni2Mn1−xCrxGa Heusler Alloys

نویسندگان

  • Takuo Sakon
  • Naoki Fujimoto
  • Takeshi Kanomata
  • Yoshiya Adachi
چکیده

Among the functionalities of magnetic Heusler alloys, magnetostriction is attracting considerable attention. The alloy Ni2MnGa has a premartensite phase, which is a precursor state to the martensitic transition. Some researchers have observed magnetostriction in this alloy in the premartensite phase. We performed magnetostriction studies on the premartensite phase of related Cr-substituted Ni2Mn1−xCrxGa alloys and measured the thermal strain, permeability, magnetisation, and magnetostriction of polycrystals. Our thermal expansion measurements show an anomaly that indicates the occurrence of lattice deformation below the premartensitic transition temperature TP. Our permeability measurements also showed an anomaly at the premartensitic transition. From our magnetisation results, we obtained the magnetic-anisotropy constant K1. In the martensite phase, we found that the magnetic-anisotropy constant of the x = 0.00 alloy is larger than that of the x = 0.15 alloy. At 0.24 MA/m, we obtained a magnetostriction of −120 ppm for the x = 0.15 alloy. Magnetostriction in the premartensite phase is larger than that in the austenite and martensite phases at low magnetic-field strength, thus indicating that it is related to lattice softening in the premartensite phase. The e/a is proportional to the magnetostriction and TP, which indicates that the electron energy, the magnetostriction, and the Tp are correlative each other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Research for Development of Shape Memory Alloys

Shape memory alloys have attracted much attention due to their attractive properties for applications as well as their basic aspects of deformation and transformation in structural and magnetic behavior. In 1951, the Au–Cd alloy was discovered [1]. After that, numberless shape memory alloys have been developed. A lot of applications of shape memory alloys were realized after the Ti–Ni alloy was...

متن کامل

Effect of carbon addition on the single crystalline magnetostriction of Fe-X (X = Al and Ga) alloys

The effect of carbon addition on the magnetostriction of Fe–Ga and Fe–Al alloys was investigated and is summarized in this study. It was found that the addition of carbon generally increased the magnetostriction over binary alloys of Fe–Ga and Fe–Al systems. The formation of carbide in the Fe–Ga–C alloys with a composition near D03 phase region decreased the magnetostriction drastically. Fe–Al–...

متن کامل

Introduction to half - metallic Heusler alloys : Electronic Structure and Magnetic Properties

Intermetallic Heusler alloys are amongst the most attractive half-metallic systems due to the high Curie temperatures and the structural similarity to the binary semiconductors. In this review we present an overview of the basic electronic and magnetic properties of both Heusler families: the so-called half-Heusler alloys like NiMnSb and the the full-Heusler alloys like Co 2 MnGe. Ab-initio res...

متن کامل

Magnetisation and Magnetostriction of Rapidly Quenched Rare, Earth-iron-boron Alloys

Tb-Fe-B alloys have been melt spun and data obtained for the room temperature magnetisation and magnetostriction as functions of applied field and composition. Small additions of La (w 5 at. %) leave the magnetisation unchanged but substantially reduce the magnetostriction. Results are compared with sputtered binary metallic Tb/Fe alloys.

متن کامل

Controlling the martensitic transition in Heusler shape-memory materials

A Viewpoint on: Role of Electronic Structure in the Martensitic Phase Transition of Ni2Mn1+xSn1−x Studied by Hard-X-Ray Photoelectron Spectroscopy and Ab Initio Calculation M. Ye, A. Kimura, Y. Miura, M. Shirai, Y. T. Cui, K. Shimada, H. Namatame, M. Taniguchi, S. Ueda, K. Kobayashi, R. Kainuma, T. Shishido, K. Fukushima and T. Kanomata Phys. Rev. Lett. 104, 176401 (2010) – Published April 26, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017