J ul 2 00 4 HANKEL OPERATORS IN SEVERAL COMPLEX VARIABLES AND PRODUCT BMO ( ⊗ n 1 C + )

نویسنده

  • ERIN TERWILLEGER
چکیده

H(⊗1 C+) denotes the Hardy space of square integrable functions analytic in each variable separately. Let P be the natural projection of L(⊗1 C+) onto H(⊗1 C+). A Hankel operator with symbol b is the linear operator from H(⊗1 C+) to H(⊗1 C+) given by Hbφ = Pbφ. We show that ‖Hb‖ ≃ ‖Pb‖BMO(⊗n 1 C+), where the right hand norm is S.-Y. Chang and R. Fefferman product BMO. This fact has well known equivalences in terms of commutators and the weak factorization ofH(⊗1 C+). In the case of two complex variables, this is due to Ferguson and Lacey [8]. While the current proof is inductive, and one can take the one complex variable case as the basis step, it is heavily influenced by the methods of Ferguson and Lacey. The induction is carried out with a particular form of a lemma due to Journé [10], which occurs implicitly in the work of J. Pipher [13].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hankel Operators in Several Complex Variables and Product Bmo

H(⊗1 C+) denotes the Hardy space of square integrable functions analytic in each variable separately. Let P be the natural projection of L(⊗1 C+) onto H (⊗1 C+). A Hankel operator with symbol b is the linear operator from H(⊗1 C+) to H (⊗1 C+) given by Hb φ = P⊖bφ. We show that ‖Hb‖ ≃ ‖P b‖BMO(⊗n 1 C+) , where the right hand norm is S.-Y. Chang and R. Fefferman product BMO. This fact has well k...

متن کامل

Remarks on Product VMO

Well known results related to the compactness of Hankel operators of one complex variable are extended to little Hankel operators of two complex variables. Critical to these considerations is the result of Ferguson and Lacey [5] characterizing the boundedness of the little Hankel operators in terms of the product BMO of S.-Y. Chang and R. Fefferman [2,3].

متن کامل

ul 2 00 4 Center conditions : Rigidity of logarithmic differential equations 1 Hossein

In this paper we prove that any degree d deformation of a generic logarithmic polynomial differential equation with a persistent center must be logarithmic again. This is a generalization of Ilyashenko’s result on Hamiltonian differential equations. The main tools are Picard-Lefschetz theory of a polynomial with complex coefficients in two variables, specially the Gusein-Zade/A’Campo’s theorem ...

متن کامل

Superconformal algebras and Lie superalgebras of the Hodge theory

We observe a correspondence between the zero modes of superconformal algebras S(2, 1) and W (4) ([8]) and the Lie superalgebras formed by classical operators appearing in the Kähler and hyper-Kähler geometry. 1 Lie superalgebras of the Hodge theory 1.1 Kähler manifolds Let M = (M2n, g, I, ω) be a compact Kähler manifold of real dimension 2n, where g is a Riemannian (Kähler) metric, I is a compl...

متن کامل

Algebraic Properties of Toeplitz Operators on the Polydisk

and Applied Analysis 3 For commuting problem, in 1963, Brown and Halmos 2 showed that two bounded Toeplitz operators Tφ and Tψ on the classical Hardy space commute if and only if i both φ and ψ are analytic, ii both φ and ψ are analytic, or iii one is a linear function of the other. On the Bergman space of the unit disk, some similar results were obtained for Toeplitz operators with bounded har...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004