Targeting the MUC1-C oncoprotein inhibits self-renewal capacity of breast cancer cells
نویسندگان
چکیده
The capacity of breast cancer cells to form mammospheres in non-adherent serum-free culture is used as a functional characteristic of the self-renewing stem-like cell population. The present studies demonstrate that silencing expression of the MUC1-C oncoprotein inhibits growth of luminal MCF-7 and HER2-overexpressing SKBR3 breast cancer cells as mammospheres. We also show that triple-negative MDA-MB-468 breast cancer cells are dependent on MUC1-C for growth as mammospheres and tumor xenografts. Similar results were obtained when MUC1-C function was inhibited by expression of a MUC1-C(CQCAQA) mutant. Moreover, treatment with the MUC1-C inhibitor GO-203, a cell penetrating peptide that binds to the MUC1-C cytoplasmic domain and blocks MUC1-C function, confirmed the importance of this target for self-renewal. The mechanistic basis for these findings is supported by the demonstration that MUC1-C activates NF-κB, occupies the IL-8 promoter with NF-κB, and induces IL-8 transcription. MUC1-C also induces NF-κB-dependent expression of the IL-8 receptor, CXCR1. In concert with these results, targeting MUC1-C with GO-203 suppresses IL-8/CXCR1 expression and disrupts the formation of established mammospheres. Our findings indicate that MUC1-C contributes to the self-renewal of breast cancer cells by activating the NF-κBIL-8/CXCR1 pathway and that targeting MUC1-C represents a potential approach for the treatment of this population.
منابع مشابه
MUC1-C confers EMT and KRAS independence in mutant KRAS lung cancer cells
Non-small cell lung cancers (NSCLCs) that harbor an oncogenic KRAS mutation are often associated with resistance to targeted therapies. The MUC1-C transmembrane protein is aberrantly overexpressed in NSCLCs and confers a poor outcome; however, the functional role for MUC1-C in mutant KRAS NSCLC cells has remained unclear. The present studies demonstrate that silencing MUC1-C in A549/KRAS(G12S) ...
متن کاملDirect targeting of the mucin 1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells.
The mucin 1 (MUC1) oncoprotein is aberrantly overexpressed by approximately 90% of human breast cancers. However, there are no effective agents that directly inhibit MUC1 and induce death of breast cancer cells. We have synthesized a MUC1 inhibitor (called GO-201) that binds to the MUC1 cytoplasmic domain and blocks the formation of MUC1 oligomers in cells. GO-201, and not an altered version, a...
متن کاملMYELOID NEOPLASIA MUC1-C oncoprotein suppresses reactive oxygen species–induced terminal differentiation of acute myelogenous leukemia cells
Acute myeloid leukemia (AML) cells are characterized by unlimited self-renewal and an impaired capacity to undergo terminal differentiation. The MUC1 oncoprotein is aberrantly expressed in AML cells; however, there has been no evidence for involvement of MUC1 in myeloid leukemogenesis. Cell-penetrating peptide inhibitors of the MUC1-C subunit block its oligomerization and thereby oncogenic func...
متن کاملMUC1-C oncoprotein suppresses reactive oxygen species-induced terminal differentiation of acute myelogenous leukemia cells.
Acute myeloid leukemia (AML) cells are characterized by unlimited self-renewal and an impaired capacity to undergo terminal differentiation. The MUC1 oncoprotein is aberrantly expressed in AML cells; however, there has been no evidence for involvement of MUC1 in myeloid leukemogenesis. Cell-penetrating peptide inhibitors of the MUC1-C subunit block its oligomerization and thereby oncogenic func...
متن کاملIntracellular Targeting of the Oncogenic MUC1-C Protein with a Novel GO-203 Nanoparticle Formulation.
PURPOSE The MUC1-C oncoprotein is an intracellular target that is druggable with cell-penetrating peptide inhibitors. However, development of peptidyl drugs for treating cancer has been a challenge because of unfavorable pharmacokinetic parameters and limited cell-penetrating capabilities. EXPERIMENTAL DESIGN Encapsulation of the MUC1-C inhibitor GO-203 in novel polymeric nanoparticles was st...
متن کامل