A new mode of DNA binding distinguishes Capicua from other HMG-box factors and explains its mutation patterns in cancer
نویسندگان
چکیده
HMG-box proteins, including Sox/SRY (Sox) and TCF/LEF1 (TCF) family members, bind DNA via their HMG-box. This binding, however, is relatively weak and both Sox and TCF factors employ distinct mechanisms for enhancing their affinity and specificity for DNA. Here we report that Capicua (CIC), an HMG-box transcriptional repressor involved in Ras/MAPK signaling and cancer progression, employs an additional distinct mode of DNA binding that enables selective recognition of its targets. We find that, contrary to previous assumptions, the HMG-box of CIC does not bind DNA alone but instead requires a distant motif (referred to as C1) present at the C-terminus of all CIC proteins. The HMG-box and C1 domains are both necessary for binding specific TGAATGAA-like sites, do not function via dimerization, and are active in the absence of cofactors, suggesting that they form a bipartite structure for sequence-specific binding to DNA. We demonstrate that this binding mechanism operates throughout Drosophila development and in human cells, ensuring specific regulation of multiple CIC targets. It thus appears that HMG-box proteins generally depend on auxiliary DNA binding mechanisms for regulating their appropriate genomic targets, but that each sub-family has evolved unique strategies for this purpose. Finally, the key role of C1 in DNA binding also explains the fact that this domain is a hotspot for inactivating mutations in oligodendroglioma and other tumors, while being preserved in oncogenic CIC-DUX4 fusion chimeras associated to Ewing-like sarcomas.
منابع مشابه
Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila.
RTK/Ras/MAPK signaling pathways play key functions in metazoan development, but how they control expression of downstream genes is not well understood. In Drosophila, it is generally assumed that most transcriptional responses to RTK signal activation depend on binding of Ets-family proteins to specific cis-acting sites in target enhancers. Here, we show that several Drosophila RTK pathways con...
متن کاملشناسایی جهش در اگزونهای پنج و شش ژن P53 در زنان مبتلا به سرطان پستان آذربایجان شرقی
Background and Objectives: Breast cancer (BC) is the most common invasive malignancy affecting women worldwide. The tumor-suppressor P53 gene (P53) is frequently mutated in breast tumors. To use P53 as a target for therapy, it is important to accurately assess p53 mutation status in tumor samples. Materials and Methods: A total of 102 tumor samples were collected from breast cancer patients ref...
متن کاملA double‐edged sword: The world according to Capicua in cancer
CIC/Capicua is an HMG-box transcription factor that is well conserved during evolution. CIC recognizes the T(G/C)AATG(A/G)A sequence and represses its target genes, such as PEA3 family genes. The receptor tyrosine kinase/RAS/MAPK signals downregulate CIC and relieves CIC's target genes from the transrepressional activity; CIC thus acts as an important downstream molecule of the pathway and as a...
متن کاملNUCL EAR DNA CONTENT AND DNA PLOIDY ANALYSIS IN BREAST CANCER
To investigate the patterns of DNA ploidy and proliferating activity in breast cancer and relate them to other prognostic factors, paraffin blocks of 53 cases of breast carcinoma were studied. Cancer cells obtained by mechanical tissue disaggregation were examined for DNA content, ploidy and S-phase fraction. DNA assay was done using a CAS interactive image analyzing system. All of the cas...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کامل