Maternal obesity and increased neonatal adiposity correspond with altered infant mesenchymal stem cell metabolism.

نویسندگان

  • Peter R Baker
  • Zachary Patinkin
  • Allison Lb Shapiro
  • Becky A De La Houssaye
  • Michael Woontner
  • Kristen E Boyle
  • Lauren Vanderlinden
  • Dana Dabelea
  • Jacob E Friedman
چکیده

Maternal obesity is a global health problem that increases offspring obesity risk. The metabolic pathways underlying early developmental programming in human infants at risk for obesity remain poorly understood, largely due to barriers in fetal/infant tissue sampling. Utilizing umbilical cord-derived mesenchymal stem cells (uMSC) from offspring of normal weight and obese mothers, we tested whether energy metabolism and gene expression differ in differentiating uMSC myocytes and adipocytes, in relation to maternal obesity exposures and/or neonatal adiposity. Biomarkers of incomplete β-oxidation were uniquely positively correlated with infant adiposity and maternal lipid levels in uMSC myocytes from offspring of obese mothers only. Metabolic and biosynthetic processes were enriched in differential gene expression analysis related to maternal obesity. In uMSC adipocytes, maternal obesity and lipids were associated with downregulation in multiple insulin-dependent energy-sensing pathways including PI3K and AMPK. Maternal lipids correlated with uMSC adipocyte upregulation of the mitochondrial respiratory chain but downregulation of mitochondrial biogenesis. Overall, our data revealed cell-specific alterations in metabolism and gene expression that correlated with maternal obesity and adiposity of their offspring, suggesting tissue-specific metabolic and regulatory changes in these newborn cells. We provide important insight into potential developmental programming mechanisms of increased obesity risk in offspring of obese mothers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maternal obesity alters fatty acid oxidation, AMPK activity, and associated DNA methylation in mesenchymal stem cells from human infants

OBJECTIVE Infants born to mothers with obesity have greater adiposity, ectopic fat storage, and are at increased risk for childhood obesity and metabolic disease compared with infants of normal weight mothers, though the cellular mechanisms mediating these effects are unclear. METHODS We tested the hypothesis that human, umbilical cord-derived mesenchymal stem cells (MSCs) from infants born t...

متن کامل

Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project

The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM), a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1) NAM increases the adipogenic response of human umbil...

متن کامل

Excessive Leucine-mTORC1-Signalling of Cow Milk-Based Infant Formula: The Missing Link to Understand Early Childhood Obesity

Increased protein supply by feeding cow-milk-based infant formula in comparison to lower protein content of human milk is a well-recognized major risk factor of childhood obesity. However, there is yet no conclusive biochemical concept explaining the mechanisms of formula-induced childhood obesity. It is the intention of this article to provide the biochemical link between leucine-mediated sign...

متن کامل

Increased maternal fat consumption during pregnancy alters body composition in neonatal mice.

Maternal overnutrition prior to and during gestation causes pronounced metabolic dysfunction in the adult offspring. However, less is known about metabolic adaptations in the offspring that occur independently of postnatal growth and nutrition. Therefore, we evaluated the impact of excess maternal dietary lipid intake on the in utero programming of body composition, hepatic function, and hypoth...

متن کامل

Maternal low glycaemic index diet, fat intake and postprandial glucose influences neonatal adiposity – secondary analysis from the ROLO study

BACKGROUND The in utero environment is known to affect fetal development however many of the mechanisms by which this occurs remain unknown. The aim of this study was to examine the association between maternal dietary macronutrient intake and lifestyle throughout pregnancy and neonatal weight and adiposity. METHODS This was an analysis of 542 mother and infant pairs from the ROLO study (Rand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCI insight

دوره 2 21  شماره 

صفحات  -

تاریخ انتشار 2017