A self-organizing map of sigma-pi units

نویسندگان

  • Cornelius Weber
  • Stefan Wermter
چکیده

By frame of reference transformations, an input variable in one coordinate system is transformed into an output variable in a different coordinate system depending on another input variable. If the variables are represented as neural population codes, then a sigma–pi network is a natural way of coding this transformation. By multiplying two inputs it detects coactivations of input units, and by summing over the multiplied inputs, one output unit can respond invariantly to different combinations of coactivated input units. Here, we present a sigma–pi network and a learning algorithm by which the output representation self-organizes to form a topographic map. This network solves the frame of reference transformation problem by unsupervised learning. r 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)

This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...

متن کامل

Landforms identification using neural network-self organizing map and SRTM data

During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...

متن کامل

Classification of Streaming Fuzzy DEA Using Self-Organizing Map

The classification of fuzzy data is considered as the most challenging areas of data analysis and the complexity of the procedures has been obstacle to the development of new methods for fuzzy data analysis. However, there are significant advances in modeling systems in which fuzzy data are available in the field of mathematical programming. In order to exploit the results of the researches on ...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Self Organizing Map based Clustering Approach for Trajectory Data

Clustering algorithm for the moving or trajectory data provides new and helpful information. It has wide application on various location aware services. In this study the Self Organizing Map is used to form the cluster on trajectory data. The self-organizing map (SOM) is an important tool in exploratory phase of data mining. It projects input space on prototypes of a low-dimensional regular gri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2007