Mechanistic Insights on the Inhibition of C5 DNA Methyltransferases by Zebularine
نویسندگان
چکیده
In mammals DNA methylation occurs at position 5 of cytosine in a CpG context and regulates gene expression. It plays an important role in diseases and inhibitors of DNA methyltransferases (DNMTs)--the enzymes responsible for DNA methylation--are used in clinics for cancer therapy. The most potent inhibitors are 5-azacytidine and 5-azadeoxycytidine. Zebularine (1-(beta-D-ribofuranosyl)-2(1H)- pyrimidinone) is another cytidine analog described as a potent inhibitor that acts by forming a covalent complex with DNMT when incorporated into DNA. Here we bring additional experiments to explain its mechanism of action. First, we observe an increase in the DNA binding when zebularine is incorporated into the DNA, compared to deoxycytidine and 5-fluorodeoxycytidine, together with a strong decrease in the dissociation rate. Second, we show by denaturing gel analysis that the intermediate covalent complex between the enzyme and the DNA is reversible, differing thus from 5-fluorodeoxycytidine. Third, no methylation reaction occurs when zebularine is present in the DNA. We confirm that zebularine exerts its demethylation activity by stabilizing the binding of DNMTs to DNA, hindering the methylation and decreasing the dissociation, thereby trapping the enzyme and preventing turnover even at other sites.
منابع مشابه
DNA (Cytosine-C5) methyltransferase inhibition by oligodeoxyribonucleotides containing 2-(1H)-pyrimidinone (zebularine aglycon) at the enzymatic target site.
Aberrant cytosine methylation in promoter regions leads to gene silencing associated with cancer progression. A number of DNA methyltransferase inhibitors are known to reactivate silenced genes; including 5-azacytidine and 2-(1H)-pyrimidinone riboside (zebularine). Zebularine is a more stable, less cytotoxic inhibitor compared to 5-azacytidine. To determine the mechanistic basis for this differ...
متن کاملDevelopment of a universal radioactive DNA methyltransferase inhibition test for high-throughput screening and mechanistic studies
DNA methylation is an important epigenetic mark in eukaryotes, and aberrant pattern of this modification is involved in numerous diseases such as cancers. Interestingly, DNA methylation is reversible and thus is considered a promising therapeutic target. Therefore, there is a need for identifying new small inhibitors of C5 DNA methyltransferases (DNMTs). Despite the development of numerous in v...
متن کاملOn the Evolutionary Origin of Eukaryotic DNA Methyltransferases and Dnmt2
The Dnmt2 enzymes show strong amino acid sequence similarity with eukaryotic and prokaryotic DNA-(cytosine C5)-methyltransferases. Yet, Dnmt2 enzymes from several species were shown to methylate tRNA-Asp and had been proposed that eukaryotic DNA methyltransferases evolved from a Dnmt2-like tRNA methyltransferase ancestor [Goll et al., 2006, Science, 311, 395-8]. It was the aim of this study to ...
متن کاملThe genome-wide identification and transcriptional levels of DNA methyltransferases and demethylases in globe artichoke
Changes to the cytosine methylation status of DNA, driven by the activity of C5 methyltransferases (C5-MTases) and demethylases, exert an important influence over development, transposon movement, gene expression and imprinting. Three groups of C5-MTase enzymes have been identified in plants, namely MET (methyltransferase 1), CMT (chromomethyltransferases) and DRM (domains rearranged methyltran...
متن کاملEffects of a novel DNA methyltransferase inhibitor Zebularine on human lens epithelial cells
PURPOSE Posterior capsular opacification (PCO) is a common long-term complication of modern cataract surgery. We have shown that Zebularine, an inhibitor of DNA methylation, suppresses transforming growth factor-β (TGFβ)-induced lens epithelial cells (LECs)-myofibroblasts transdifferentiation. The purpose of this study is to evaluate the role that Zebularine plays in the inhibition of PCO patho...
متن کامل