An improved Markov-chain Monte Carlo sampler for the estimation of cosmological parameters from CMB data

نویسندگان

  • Anže Slosar
  • M. P. Hobson
چکیده

Markov-chain Monte Carlo sampling has become a standard technique for exploring the posterior distribution of cosmological parameters constrained by observations of CMB anisotropies. Given an infinite amount of time, any MCMC sampler will eventually converge such that its stationary distribution is the posterior of interest. In practice, however, naive samplers require a considerable amount of time to explore the posterior distribution fully. In the best case, this results only in wasted CPU time, but in the worse case can lead to underestimated confidence limits on the values of cosmological parameters. Even for the current CMB data set, the sampler employed in the widely-used COSMO-MC package does not sample very efficiently. This difficulty is yet more pronounced for data sets of the quality anticipated for the Planck mission. We thus propose a new MCMC sampler for analysing total intensity CMB observations, which can be easily incorporated into the COSMO-MC software, but has rapid convergence and produces reliable confidence limits. This is achieved by using dynamic widths for proposal distributions, dynamic covariance matrix sampling, and a dedicated proposal distribution for moving along well-known degeneracy directions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal Parameters for an Analytic Description of the Cmb Cosmological Parameter Likelihood

The normal parameters are a non–linear transformation of the cosmological parameters whose likelihood function is very well–approximated by a normal distribution. This transformation serves as an extreme form of data compression allowing for practically instantaneous calculation of the likelihood of any given model, as long as the model is in the parameter space originally considered. The compr...

متن کامل

Normal Parameters for Super–radical Compression of Cmb Data

The normal parameters are a non–linear transformation of the cosmological parameters whose likelihood function is very well–approximated by a normal distribution. This transformation serves as an extreme form of data compression allowing for practically instantaneous calculation of the likelihood of any given model, as long as the model is in the parameter space originally considered. The compr...

متن کامل

Using Markov chain Monte Carlo methods for estimating parameters with gravitational radiation data

We present a Bayesian approach to the problem of determining parameters for coalescing binary systems observed with laser interferometric detectors. By applying a Markov Chain Monte Carlo (MCMC) algorithm, specifically the Gibbs sampler, we demonstrate the potential that MCMC techniques may hold for the computation of posterior distributions of parameters of the binary system that created the g...

متن کامل

Alternating Subspace-Spanning Resampling to Accelerate Markov Chain Monte Carlo Simulation

This article provides a simple method to accelerate Markov chain Monte Carlo sampling algorithms, such as the data augmentation algorithm and the Gibbs sampler, via alternating subspace-spanning resampling (ASSR). The ASSR algorithm often shares the simplicity of its parent sampler but has dramatically improved efŽ ciency. The methodology is illustrated with Bayesian estimation for analysis of ...

متن کامل

Markov Chain Monte Carlo Methods for Bayesian Gravitational Radiation Data Analysis Typeset Using Revt E X 1

The LIGO and VIRGO kilometer length laser interferometric gravitational radiation detectors should observe numerous mergers of compact binary systems. The accurate determination of the binary's signal parameters is a critical task for the observers. Important cosmological information, such as an independent measurement of the Hubble constant, can be derived if an accurate determination of the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003