Characterization of the low-temperature intermediates of the reaction of fully reduced soluble cytochrome oxidase with oxygen by electron-paramagnetic-resonance and optical spectroscopy.

نویسندگان

  • G M Clore
  • L E Andréasson
  • B Karlsson
  • R Aasa
  • B G Malmström
چکیده

The reaction of fully reduced soluble bovine heart cytochrome oxidase with O2 at 173K was investigated by low-temperature optical and e.p.r. spectroscopy, and the kinetics of the reaction were analysed by non-linear optimization techniques. The only e.p.r. signals seen during the course of the reaction are those attributable to low-spin cytochrome a3+ and CuA2+. Quantitative analysis of e.p.r. signals shows that, at the end point of the reaction at 173K, nearly 100% of CuA is in the cupric state but only about 40% of cytochrome a is in the ferric low-spin state. The optical spectra recorded at this stage of the reaction show incomplete oxidation of haem and the absence of a 655 nm absorption band. The only reaction scheme that accounts for both the e.p.r. and optical data is a four-intermediate mechanism involving a branching pathway. The reaction is initiated when fully reduced cytochrome oxidase reacts with O2 to form intermediate I. This is then converted into either intermediate IIA or intermediate IIB. Of these, intermediate IIB is a stable end product at 173 K, but intermediate IIA is converted into intermediate III, which is the stable state at 173 K in this branch of the mechanism. The kinetic analysis of the e.p.r. data allows the unambiguous assignments of the valence states of cytochrome a and CuA in the intermediates. Intermediate I contains cytochrome a2+ and CuA+, intermediate IIA contains low-spin cytochroma a3+ and CuA+, intermediate IIB contains cytochrome a2+ and CuA2+, and intermediate III contains low-spin cytochrome a3+ and CuA2+. The electronic state of the O2-binding CuBa3 couple during the reoxidation of cytochrome oxidase is discussed in terms of an integrated structure containing CuB, cytochrome a3 and O2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ELECTRON PARAMAGNETIC RESONANCE (EPR) SPECTROSCOPY AND GEOCHEMISTRY IN TIN EXPLORATION AT RENISON, TASMANIA AUSTRALIA

Rock powder of dolomite samples from the Renison mine area of Tasmania, Australia were analyzed by electron paramagnentic resonance spectroscopy (EPR), Atomic Absorption and Mass Spectrometer to identify alteration related to mineralisation. The least-altered dolomite samples, which are not effected by circulation of diagenetic and hydrothermal fluids are characterised by low Mn and Fe and ...

متن کامل

Characterization of the intermediates in the reaction of membrane-bound mixed-valence-state cytochrome oxidase with oxygen at low temperatures by optical spectroscopy in the visible region.

The 'pure' difference spectra of the three species, IM, IIM and IIIM, formed in the low-temperature reaction of membrane-bound mixed-valence-state cytochrome oxidase with O2 relative to unliganded membrane-bound mixed-valence-state cytochrome oxidase were characterized by optical spectroscopy in the visible region. The difference spectrum of species IM was characterized by a peak at 590 nm and ...

متن کامل

Structural features and the reaction mechanism of cytochrome oxidase: iron and copper X-ray absorption fine structure.

X-ray edge absorption of copper and extended fine structure studies of both copper and iron centers have been made of cytochrome oxidase from beef heart, Paracoccus dentrificans, and HB-8 thermophilic bacteria (1-2.5 mM in heme). The desired redox state (fully oxidized, reduced CO, mixed valence formate and CO) in the x-ray beam was controlled by low temperature (-140 degrees C) and was continu...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 185 1  شماره 

صفحات  -

تاریخ انتشار 1980