SCIDDICA-SS3: A New Cellular Automata Model for Simulating Fast Moving Landslides

نویسندگان

  • M. V. Avolio
  • S. Di Gregorio
  • V. Lupiano
  • P. Mazzanti
  • W. Spataro
چکیده

Cellular Automata (CA) are discrete and parallel computational models useful for simulating dynamic systems that evolve on the basis on local interactions. Some natural events, such as some types of landslides, fall into this type of phenomena and lend themselves well to be simulated with this approach. This paper describes the latest version of the SCIDDICA CA family models, specifically developed to simulate debris-flows type landslides. The latest model of the family, named SCIDDICA-SS3, inherits all the features of its predecessor, SCIDDICA-SS2, with the addition of a particular strategy to manage momentum. The introduction of the latter permits a better approximation of inertial effects that characterize some rapid debris flows. First simulations attempts of real landslides with SCIDDICA-SS3 have produced quite satisfactory results, comparable with the previous model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Debris-flow susceptibility assessment through cellular automata modeling: an example from 15?16 December 1999 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy)

On 15–16 December 1999, heavy rainfall severely stroke Campania region (southern Italy), triggering numerous debris flows on the slopes of the San Martino Valle Caudina-Cervinara area. Soil slips originated within the weathered volcaniclastic mantle of soil cover overlying the carbonate skeleton of the massif. Debris slides turned into fast flowing mixtures of matrix and large blocks, downslope...

متن کامل

Application Context of the SCIDDICA Model Family for Simulations of Flow-Like Landslides

Cellular Automata (CA) are parallel computing models whose evolution is governed by purely local laws. The global dynamics of complex systems simulated by means of CA emerges from the local interactions of their elementary components. Some macroscopic natural phenomena are included in the class of such complex systems. Among them, of particular interest are several W\SHVRI³VXUIDFHIORZV´ where t...

متن کامل

Development and Calibration of a Preliminary Cellular Automata Model for Snow Avalanches

Numerical modelling is a major challenge in the prevention of risks related to the occurrence of catastrophic phenomena. A Cellular Automata methodology was developed for modelling large scale (extended for kilometres) dangerous surface flows of different nature such as lava flows, pyroclastic flows, debris flows, rock avalanches, etc. This paper presents VALANCA, a first version of a Cellular ...

متن کامل

Modelling Combined Subaerial-Subaqueous Flow-Like Landslides by Cellular Automata

Macroscopic Cellular Automata characterize a methodological approach for modelling large scale (extended for kilometres) complex acentric phenomena, e.g. surface flows as lava flows, debris flows etc.. This paper concerns the extension of such a method in order to simulate combined subaerial-subaqueous flow-like landslides. The occurrence of heterogeneous interacting processes requires a more p...

متن کامل

A fast wallace-based parallel multiplier in quantum-dot cellular automata

Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012