Quantitative analysis of 3D extracellular matrix remodelling by pancreatic stellate cells

نویسندگان

  • Benjamin K Robinson
  • Ernesto Cortes
  • Alistair J Rice
  • Muge Sarper
  • Armando Del Río Hernández
چکیده

Extracellular matrix (ECM) remodelling is integral to numerous physiological and pathological processes in biology, such as embryogenesis, wound healing, fibrosis and cancer. Until recently, most cellular studies have been conducted on 2D environments where mechanical cues significantly differ from physiologically relevant 3D environments, impacting cellular behaviour and masking the interpretation of cellular function in health and disease. We present an integrated methodology where cell-ECM interactions can be investigated in 3D environments via ECM remodelling. Monitoring and quantification of collagen-I structure in remodelled matrices, through designated algorithms, show that 3D matrices can be used to correlate remodelling with increased ECM stiffness observed in fibrosis. Pancreatic stellate cells (PSCs) are the key effectors of the stromal fibrosis associated to pancreatic cancer. We use PSCs to implement our methodology and demonstrate that PSC matrix remodelling capabilities depend on their contractile machinery and β1 integrin-mediated cell-ECM attachment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal survival rate. Persistent activation of pancreatic stellate cells (PSCs) can perturb the biomechanical homoeostasis of the tumour microenvironment to favour cancer cell invasion. Here we report that ATRA, an active metabolite of vitamin A, restores mechanical quiescence in PSCs via a mechanism involving a re...

متن کامل

Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis.

BACKGROUND The pathogenesis of pancreatic fibrosis is unknown. In the liver, stellate cells play a major role in fibrogenesis by synthesising increased amounts of collagen and other extracellular matrix (ECM) proteins when activated by profibrogenic mediators such as cytokines and oxidant stress. AIMS To determine whether cultured rat pancreatic stellate cells produce collagen and other ECM p...

متن کامل

Overexpressed decorin in pancreatic cancer: potential tumor growth inhibition and attenuation of chemotherapeutic action.

PURPOSE The aim of this study was to investigate the expression and significance of decorin in pancreatic cancer. EXPERIMENTAL DESIGN Decorin expression in normal pancreas and excised tumors was examined by real-time quantitative PCR, Western blot analysis, and immunohistochemistry. Reverse transcription-PCR was used to analyze cultures of pancreatic cancer and stellate cells. Growth-inhibito...

متن کامل

3. Pancreatic stellate cells and fibrosis

Pancreatic cancer is characterised by a prominent desmoplastic/stromal reaction. It is now known that pancreatic stellate cells (PSCs) are the principal source of fibrosis in the stroma and interact closely with cancer cells to create a tumor facilitatory environment that stimulates local tumor growth and distant metastasis. Pancreatic fibrosis is initiated when PSCs become activated and underg...

متن کامل

Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation

Liver synthetic and metabolic function can only be optimised by the growth of cells within a supportive liver matrix. This can be achieved by the utilisation of decellularised human liver tissue. Here we demonstrate complete decellularization of whole human liver and lobes to form an extracellular matrix scaffold with a preserved architecture. Decellularized human liver cubic scaffolds were rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016