A Hausdorff-young Inequality for Measured Groupoids

نویسندگان

  • PATRICIA BOIVIN
  • Patricia Boivin
  • Jean Renault
چکیده

The classical Hausdorff-Young inequality for locally compact abelian groups states that, for 1 ≤ p ≤ 2, the L-norm of a function dominates the L-norm of its Fourier transform, where 1/p + 1/q = 1. By using the theory of non-commutative L-spaces and by reinterpreting the Fourier transform, R. Kunze (1958) [resp. M. Terp (1980)] extended this inequality to unimodular [resp. non-unimodular] groups. The analysis of the L-spaces of the von Neumann algebra of a measured groupoid provides a further extension of the Hausdorff-Young inequality to measured groupoids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Haar Systems on Equivalent Groupoids

For second countable locally compact Hausdorff groupoids, the property of possessing a Haar system is preserved by equivalence.

متن کامل

J ul 2 00 9 NON - HAUSDORFF SYMMETRIES OF C ∗ - ALGEBRAS

Symmetry groups or groupoids of C∗-algebras associated to nonHausdorff spaces are often non-Hausdorff as well. We describe such symmetries using crossed modules of groupoids. We define actions of crossed modules on C∗-algebras and crossed products for such actions, and justify these definitions with some basic general results and examples.

متن کامل

A Hausdorff–young Inequality for Locally Compact Quantum Groups

Let G be a locally compact abelian group with dual group Ĝ. The Hausdorff–Young theorem states that if f ∈ Lp(G), where 1 ≤ p ≤ 2, then its Fourier transform Fp(f) belongs to Lq(Ĝ) (where 1 p + 1 q = 1) and ||Fp(f)||q ≤ ||f ||p. Kunze and Terp extended this to unimodular and locally compact groups, respectively. We further generalize this result to an arbitrary locally compact quantum group G b...

متن کامل

Renault’s Equivalence Theorem for C∗-Algebras of Étale Groupoids

The purpose of this paper is to prove directly that if two locally compact Hausdorff étale groupoids are Morita equivalent, then their reduced groupoid C∗-algebras are Morita equivalent.

متن کامل

Uncertainty Principle in Terms of Entropy for the Riemann-liouville Operator

We prove Hausdorff-Young inequality for the Fourier transform connected with Riemann-Liouville operator. We use this inequality to establish the uncertainty principle in terms of entropy. Next, we show that we can derive the Heisenberg-Pauli-Weyl inequality for the precedent Fourier transform.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008