Cyclic olefin polymers: innovative materials for high-density multiwell plates.
نویسندگان
چکیده
Extension of ultra-high-throughput experiment (UHTE) approaches to new assay methodologies is often limited by compromised data quality when samples are miniaturized. Overcoming this challenge requires attending to all components of an automated laboratory system contributing to assay variability. A key but often neglected source is the high-density multiwell platform or microtiter plate. Materials from which plates are fabricated may degrade or otherwise compromise an assay through a variety of sources, including structural weakness, distortion of optical signals, and chemical contamination. Cyclic olefin polymer (COP) resins (CAS Registry Number 26007-43-2, inclusive of polymers and copolymers, sometimes referred to as cyclo-olefin polymers or copolymers) are receiving attention for their structural strength, optical clarity, and biocompatibility. The physical and chemical properties of COP are reviewed for their ramifications on the performance of high-density multiwell plates. Cells known to be difficult to culture in standard plasticware thrive in miniaturized COP wells. In addition, cell-based assays whose data deteriorated when miniaturized in standard plastic reveal a robust recovery of data quality when miniaturized in COP. It is hoped that the material qualities and advantages of COP become better appreciated among the screening and biological communities.
منابع مشابه
Synthesis of cyclic olefin polymers with high glass transition temperature and high transparency using tungsten-based catalyst system
Novel cyclic olefin polymers (COPs) derived from bulky cyclic olefins, tricyclodipentadiene (TCPD) and tricyclo[6.4.0.19,12]-tridec-10-ene (TTE), with high glass transition temperature (Tg), excellent thermal stability, and high transparency, have been synthesized by ring-opening metathesis polymerization (ROMP) and subsequent hydrogenation. ROMP of TCPD and TTE was carried out successfully wit...
متن کاملChemical Structure and Physical Properties of Cyclic Olefin Copolymers*
Cyclic olefin copolymers comprise a new class of polymeric materials showing properties of high glass-transition temperature, optical clarity, low shrinkage, low moisture absorption, and low birefringence. There are several types of cyclic olefin copolymers based on different types of cyclic monomers and polymerization methods. In this work, we have analyzed the chemical structure of the curren...
متن کاملOlefin Fibers
Olefin fibers, also called polyolefin fibers, are defined as manufactured fibers in which the fiber-forming substance is a synthetic polymer of at least 85 wt% ethylene, propylene, or other olefin units (1). Several olefin polymers are capable of forming fibers, but only polypropylene [9003-07-0] (PP) and, to a much lesser extent, polyethylene [9002-88-4] (PE) are of practical importance. Olefi...
متن کاملDiscovery and development of metallocene-based polyolefins with special properties
Beside Ziegler-Natta and Phillips catalysts the development of methylaluminoxane (MAO) as cocatalyst in combination with metallocenes or other transition metal complexes for the polymerization of olefins has widely increased the possibilities in controlling the polymer composition, polymer structure, tacticity and special properties with high precision. These catalysts allow the synthesis of is...
متن کاملPaper microzone plates.
This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multiwell plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (approximately 180 microm), require small volumes of sample (5 microL per zone), and can be manufactu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Assay and drug development technologies
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2008