Decreased histone deacetylase 4 is associated with human osteoarthritis cartilage degeneration by releasing histone deacetylase 4 inhibition of runt-related transcription factor-2 and increasing osteoarthritis-related genes: a novel mechanism of human osteoarthritis cartilage degeneration

نویسندگان

  • Kun Cao
  • Lei Wei
  • Zhiqiang Zhang
  • Li Guo
  • Congming Zhang
  • Yongping Li
  • Changqi Sun
  • Xiaojuan Sun
  • Shaowei Wang
  • Pengcui Li
  • Xiaochun Wei
چکیده

INTRODUCTION To investigate if decreased histone deacetylase 4 (HDAC4) is associated with human osteoarthritis (OA) cartilage degeneration by releasing HDAC4 inhibition of runt-related transcription factor-2 (Runx2) resulting in increase of OA cartilage degeneration-related genes. METHODS The mRNA and protein levels of HDAC4, Runx2, matrix metalloproteinase (MMP)-13, Indian hedgehog (Ihh) and type X collagen were detected by performing real-time PCR (RT-PCR), western blotting and immunohistochemistry on specimens from human OA and normal cartilage. To further explore the mechanism of regulation of Runx2 and OA-related genes by HDAC4, changes in these OA-related genes were further quantified by RT-PCR after overexpression of HDAC4 and knockdown of HDAC4 by siRNA. Runx2 and MMP-13 promoter activities were measured by dual luciferase assays. RESULTS The levels of HDAC4 in the cartilage from OA patients and healthy 40- to 60-year-old donors were decreased to 31% and 65% compared with specimens from 20- to 40-year-old healthy donors, respectively (P <0.05). Decreased HDAC4 was associated with increased Runx2 and other OA-related genes in human OA cartilage, specifically: MMP-13, Ihh and type X collagen. Exogenous HDAC4 decreased the mRNA levels of Runx2, MMP1, MMP3, MMP-13, type X collagen, Ihh, ADAMTS-4 and -5, and increased the mRNA of type II collagen. In addition, the data also shows that overexpression of HDAC4 not only decreased the expression of interleukin (IL)-1β, Cox2 and iNos and increased the expression of aggrecan, but also partially blocked the effect of IL-1β on expression of catabolic events in human OA chondrocytes. HDAC4 also inhibited Runx2 promoter activity and MMP13 promotor activity in a dose-dependent manner. In contrast, inhibition of HDAC4 by TSA drug had an opposite effect. CONCLUSIONS Our study is the first to demonstrate that decreased HDAC4 contributes, at least in part, to the pathogenesis of OA cartilage degeneration. Thus, HDAC4 may have chondroprotective properties by inhibiting Runx2 and OA-related genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-381 Regulates Chondrocyte Hypertrophy by Inhibiting Histone Deacetylase 4 Expression

Chondrocyte hypertrophy, regulated by Runt-related transcription factor 2 (RUNX2) and matrix metalloproteinase 13 (MMP13), is a crucial step in cartilage degeneration and osteoarthritis (OA) pathogenesis. We previously demonstrated that microRNA-381 (miR-381) promotes MMP13 expression during chondrogenesis and contributes to cartilage degeneration; however, the mechanism underlying this process...

متن کامل

HDACi and Nrf2: not from alpha to omega but from acetylation to OA

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is probably the most important ubiquitously expressed little protein that you have never heard of. Discovered more than 20 years ago, it is now known as a master regulator of redox homeostasis, controlling a plethora of cytoprotective phase II anti-oxidant enzymes. Regulation of gene expression by histone acetyltransferases and histone deacetyl...

متن کامل

Sulforaphane Represses Matrix-Degrading Proteases and Protects Cartilage From Destruction In Vitro and In Vivo

OBJECTIVE Sulforaphane (SFN) has been reported to regulate signaling pathways relevant to chronic diseases. The aim of this study was to investigate the impact of SFN treatment on signaling pathways in chondrocytes and to determine whether sulforaphane could block cartilage destruction in osteoarthritis. METHODS Gene expression, histone acetylation, and signaling of the transcription factors ...

متن کامل

Hypertrophic differentiation of mesenchymal stem cells is suppressed by xanthotoxin via the p38-MAPK/HDAC4 pathway

Chondrocyte hypertrophy is a physiological process in endochondral ossification. However, the hypertrophic‑like alterations of chondrocytes at the articular surface may result in osteoarthritis (OA). In addition, the generation of fibrocartilage with a decreased biological function in tissue engineered cartilage, has been attributed to chondrocyte hypertrophy. Therefore, suppressing chondrocyte...

متن کامل

Mechanical and IL-1β Responsive miR-365 Contributes to Osteoarthritis Development by Targeting Histone Deacetylase 4

Mechanical stress plays an important role in the initiation and progression of osteoarthritis. Studies show that excessive mechanical stress can directly damage the cartilage extracellular matrix and shift the balance in chondrocytes to favor catabolic activity over anabolism. However, the underlying mechanism remains unknown. MicroRNAs (miRNAs) are emerging as important regulators in osteoarth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014