Characterization of a cyclic nucleotide- and calcium-independent neurofilament protein kinase activity in axoplasm from the squid giant axon.
نویسندگان
چکیده
The phosphorylation activity associated with a neurofilament-enriched cytoskeletal preparation isolated from the squid giant axon has been studied and compared to the phosphorylation activities in intact squid axoplasm. The high molecular weight (greater than 300 kDa) and 220-kDa neurofilament proteins are the major endogenous substrates for the kinases in the axoplasm and the neurofilament preparation, whereas 95- and less than 60-kDa proteins are the major phosphoproteins in the ganglion cell preparation. The squid axon neurofilament (SANF) protein kinase activity appeared to be both cAMP and Ca2+ independent and could phosphorylate both casein (Km = 40 microM) and histone (Km = 180 microM). The SANF protein kinase could utilize either ATP or GTP in the phosphotransferase reaction, with a Km for ATP of 58 microM and 129.4 microM for GTP when casein was used as the exogenous substrate; and 25 and 98.1 microM for ATP and GTP, respectively, when the endogenous neurofilament proteins were used as substrates. The SANF protein kinase activity was only slightly inhibited by 2,3-diphosphoglycerate and various polyamines at high concentrations and was poorly inhibited by heparin (34% inhibition at 100 micrograms/ml). The failures of heparin to significantly inhibit and the polyamines to stimulate the SANF protein kinase indicate that it is not a casein type II kinase. The relative efficacy of GTP as a phosphate donor indicates that SANF protein kinase differs from known casein type I kinases. Phosphorylated (32P-labeled) neurofilament proteins were only slightly dephosphorylated in the presence of axoplasm or stellate ganglion cell supernatants, and the neurofilament-enriched preparation did not dephosphorylate 32P-labeled neurofilament proteins. The axoplasm and neurofilament preparations had no detectable protein kinase inhibitor activity, but a strong inhibitor activity, which was not dialyzable but was heat inactivatable, was found in ganglion cells. This inhibitor activity may account for the low phosphorylation activity found in the stellate ganglion cells and may indicate inhibitory regulation of SANF protein kinase activity in the ganglion cell bodies.
منابع مشابه
Identification and quantification of calcium-binding proteins in squid axoplasm.
The identities and quantities of calcium-binding proteins were determined in axoplasm isolated from the squid giant axon. 45Ca-binding assays on nitrocellulose filters containing axoplasm proteins separated by SDS-polyacrylamide electrophoresis revealed 4 major calcium-binding bands. These included the high-molecular-weight (Mr greater than 330 and 220 X 10(3] neurofilament proteins, an unident...
متن کاملP13suc1 associates with a cdc2-like kinase in a multimeric cytoskeletal complex in squid axoplasm.
P13suc1 sepharose-conjugated beads were used to extract the kinases that phosphorylate neurofilaments in the squid giant axon. Using Western blots and in vitro kinase assays, we demonstrated the presence of an active cdc2-like kinase and its putative regulators such as cyclin E, p13, and p67 in axoplasm and a P13-axoplasm complex (P13-Ax). Protein kinase A (PKA) and casein kinase (CK) I and II ...
متن کاملNeurofilament protein is phosphorylated in the squid giant axon
We have observed the phosphorylation of neurofilament protein from squid axoplasm. Phosphorylation is demonstrated by 32P labeling of protein during incubation of axoplasm with [gamma-32P]ATP. When the labeled proteins are separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), two bands, at 2.0 x 10(5) daltons and greater than 4 x 10(5) daltons, contain the bulk of the 32P. The 2.0 x 1...
متن کاملBiochemical and immunocytochemical characterization and distribution of phosphorylated and nonphosphorylated subunits of neurofilaments in squid giant axon and stellate ganglion.
Monoclonal antibodies to squid neurofilament (aNFP) and intermediate filament (aIFA) proteins were used as probes for the biochemical and immunocytochemical analyses of neurofilament structure and distribution in the squid giant axon and stellate ganglion. On Western blots the aNFP antibody stained exclusively the 220 kDa and high-molecular-weight (HMW) components of neurofilaments in the giant...
متن کاملCalmodulin and calmodulin-binding proteins in brain.
filament preparations isolated from many different species. Incubation of crude and purified preparations of filaments with [f2P]ATP labels nearly all the filament proteins (Fig. l), the exception being the 65000-mol.wt. band of Loligo (Fig. la). Phosphorylation in vitro is mediated by a cyclic AMPand Ca2+-independent, and Mg2+-dependent, protein kinase. The enzyme is activated by Na+ and K+ an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 261 6 شماره
صفحات -
تاریخ انتشار 1986