SEBAL-A: A Remote Sensing ET Algorithm that Accounts for Advection with Limited Data. Part I: Development and Validation
نویسندگان
چکیده
The Surface Energy Balance Algorithm for Land (SEBAL) is one of the remote sensing (RS) models that are increasingly being used to determine evapotranspiration (ET). SEBAL is a widely used model, mainly due to the fact that it requires minimum weather data, and also no prior knowledge of surface characteristics is needed. However, it has been observed that it underestimates ET under advective conditions due to its disregard of advection as another source of energy available for evaporation. A modified SEBAL model was therefore developed in this study. An advection component, which is absent in the original SEBAL, was introduced such that the energy available for evapotranspiration was a sum of net radiation and advected heat energy. The improved SEBAL model was termed SEBAL-Advection or SEBAL-A. An important aspect of the improved model is the estimation of advected energy using minimal weather data. While other RS models would require hourly weather data to be able to account for advection (e.g., METRIC), SEBAL-A only requires daily averages of limited weather data, making it appropriate even in areas where weather data at short time steps may not be available. In this study, firstly, the original SEBAL model was evaluated under advective and non-advective conditions near Rocky Ford in southeastern Colorado, a semi-arid area where afternoon advection is common occurrence. The SEBAL model was found to incur large errors when there was advection (which was indicated by higher wind speed and warm and dry air). SEBAL-A was then developed and validated in the same area under standard surface conditions, which were described as healthy alfalfa with height of 40–60 cm, without water-stress. ET OPEN ACCESS Remote Sens. 2015, 7 15047 values estimated using the original and modified SEBAL were compared to large weighing lysimeter-measured ET values. When the SEBAL ET was compared to SEBAL-A ET values, the latter showed improved performance, with the ET Mean Bias Error (MBE) reduced from −17.1% for original SEBAL to 2.2% for SEBAL-A and the Root Mean Square Error (RMSE) reduced from 25.1% to 10.9%, respectively. It was therefore concluded that the developed SEBAL-A model was capable of accounting for advection and therefore suitable for arid and semi-arid regions where advection is common.
منابع مشابه
SEBAL-A: A Remote Sensing ET Algorithm that Accounts for Advection with Limited Data. Part II: Test for Transferability
Because the Surface Energy Balance Algorithm for Land (SEBAL) tends to underestimate ET when there is advection, the model was modified by incorporating an advection component as part of the energy usable for crop evapotranspiration (ET). The modification involved the estimation of advected energy, which required the development of a wind function. In Part I, the modified SEBAL model (SEBAL-A) ...
متن کاملSoil Moisture Estimation in Rangelands Using Remote Sensing (Case Study: Malayer, West of Iran)
Soil moisture is generally regarded as the limiting factors in rangeland production. Although many studies have been conducted to estimate soil moisture in semiarid areas, there is little information on mountainous rangelands in west of Iran. The present study aims to investigate the soil moisture estimation in rangelands as compared to the other land uses over a mountainous area in central Zag...
متن کاملMapping Evapotranspiration with the Remote Sensing ET algorithms METRIC and SEBAL under advective and non-advective conditions: Accuracy determination with weighing lysimeters
The Surface Energy Balance Algorithm for Land (SEBAL) is one of several remote sensing-based crop evapotranspiration (ET) models. One advantage that SEBAL has is its minimal requirement for ground-based weather data. However, its downside is that in the presence of advection it may underestimate ET. This is due to the use of a fixed evaporative fraction (EF) for the entire day. The EF value is ...
متن کاملA MODIS-Based Energy Balance to Estimate Evapotranspiration for Clear-Sky Days in Brazilian Tropical Savannas
Evapotranspiration (ET) plays an important role in global climate dynamics and in primary production of terrestrial ecosystems; it represents the mass and energy transfer from the land to atmosphere. Limitations to measuring ET at large scales using ground-based methods have motivated the development of satellite remote sensing techniques. The purpose of this work is to evaluate the accuracy of...
متن کاملارزیابی کارایی الگوریتمهای سنجش از دور SEBS و SEBAL در برآورد تبخیر و بررسی اثر شوری در پیکرههای آبی
Evaporation is one of the important components in water body’s management, leading to changes in the water level and water balance. Also, its accurate estimation is faced with certain difficulties and complexities. Because of the limitations of physical and empirical methods based on the meteorological data, remote sensing technology can be widely used for evaporation calculation due to its cap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015