Intracellular ion channels and cancer

نویسندگان

  • Luigi Leanza
  • Lucia Biasutto
  • Antonella Managò
  • Erich Gulbins
  • Mario Zoratti
  • Ildikò Szabò
چکیده

Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K(+) channels (Ca(2+)-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K(+) channel-3 (TASK-3)), Ca(2+) uniporter MCU, Mg(2+)-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca(2+) depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca(2+) channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Simulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor

Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...

متن کامل

Simulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor

Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...

متن کامل

The Emerging Role of Two-Pore Domain Potassium Channels in Breast Cancer

Potassium ion channels are transmembrane proteins that selectively facilitate ion flow down an electrochemical gradient between intracellular and extracellular environments. There is accumulating evidence which suggest that potassium channel protein activity is important in the pathophysiology of cancer, and associations of the two-pore domain family of potassium channels and breast cancer are ...

متن کامل

Ion channels and transporters in cancer. 3. Ion channels in the tumor cell-microenvironment cross talk.

The traditional view of cancer as a collection of proliferating cells must be reconsidered, and cancer must be viewed as a "tissue" constituted by both transformed cells and a heterogeneous microenvironment, that tumor cells construct and remodel during multistep tumorigenesis. The "tumor microenvironment" (TM) is formed by mesenchymal, endothelial, and immune cells immersed in a network of ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013