Generating Elliptic Curves of Prime Order
نویسندگان
چکیده
A variation of the Complex Multiplication (CM) method for generating elliptic curves of known order over finite fields is proposed. We give heuristics and timing statistics in the mildly restricted setting of prime curve order. These may be seen to corroborate earlier work of Koblitz in the class number one setting. Our heuristics are based upon a recent conjecture by R. Gross and J. Smith on numbers of twin primes in algebraic number fields. Our variation precalculates class polynomials as a separate off-line process. Unlike the standard approach, which begins with a prime p and searches for an appropriate discriminant D, we choose a discriminant and then search for appropriate primes. Our on-line process is quick and can be compactly coded. In practice, elliptic curves with near prime order are used. Thus, our timing estimates and data can be regarded as upper estimates for practical purposes.
منابع مشابه
Elliptic Curves of Prime Order over Optimal Extension Fields for Use in Cryptography
We present an algorithm for generating elliptic curves of prime order over Optimal Extension Fields suitable for use in cryptography. The algorithm is based on the theory of Complex Multiplication. Furthermore, we demonstrate the efficiency of the algorithm in practice by giving practical running times. In addition, we present statistics on the number of cryptographically strong elliptic curves...
متن کاملOn the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملOn counting and generating curves over small finite fields
We consider curves defined over small finite fields with points of large prime order over an extension field. Such curves are often referred to as Koblitz curves and are of considerable cryptographic interest. An interesting question is whether such curves are easy to construct as the target point order grows asymptotically. We show that under certain number theoretic conjecture, if q is a prim...
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملGenerating More MNT Elliptic Curves
In their seminal paper, Miyaji, Nakabayashi and Takano [12] describe a simple method for the creation of elliptic curves of prime order with embedding degree 3, 4, or 6. Such curves are important for the realisation of pairing-based cryptosystems on ordinary (non-supersingular) elliptic curves. We provide an alternative derivation of their results, and extend them to allow for the generation of...
متن کامل