Mechanics of snout expansion in suction-feeding seahorses: musculoskeletal force transmission.

نویسندگان

  • Sam Van Wassenbergh
  • Heleen Leysen
  • Dominique Adriaens
  • Peter Aerts
چکیده

Seahorses and other syngnathid fishes rely on a widening of the snout to create the buccal volume increase needed to suck prey into the mouth. This snout widening is caused by abduction of the suspensoria, the long and flat bones outlining the lateral sides of the mouth cavity. However, it remains unknown how seahorses can generate a forceful abduction of the suspensoria. To understand how force is transmitted to the suspensoria via the hyoid and the lower jaw, we performed mathematical simulations with models based on computerized tomography scans of Hippocampus reidi. Our results show that the hinge joint between the left and right hyoid bars, as observed in H. reidi, allows for an efficient force transmission to the suspensorium from a wide range of hyoid angles, including the extremely retracted hyoid orientations observed in vivo for syngnathids. Apart from the hyoid retraction force by the sternohyoideus-hypaxial muscles, force generated in the opposite direction on the hyoid by the mandibulohyoid ligament also has an important contribution to suspensorium abduction torque. Forces on the lower jaw contribute only approximately 10% of the total suspensorium torque. In particular, when dynamical aspects of hyoid retraction are included in the model, a steep increase is shown in suspensorium abduction torque at highly retracted hyoid positions, when the linkages to the lower jaw counteract further hyoid rotation in the sagittal plane. A delayed strain in these linkages allows syngnathids to postpone suction generation until the end of cranial rotation, a fundamental difference from non-syngnathiform fishes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suction is kid's play: extremely fast suction in newborn seahorses.

Ongoing anatomical development typically results in a gradual maturation of the feeding movements from larval to adult fishes. Adult seahorses are known to capture prey by rotating their long-snouted head extremely quickly towards prey, followed by powerful suction. This type of suction is powered by elastic recoil and requires very precise coordination of the movements of the associated feedin...

متن کامل

Effects of snout dimensions on the hydrodynamics of suction feeding in juvenile and adult seahorses.

Seahorses give birth to juveniles having a fully functional feeding apparatus, and juvenile feeding behaviour shows striking similarities to that of adults. However, a significant allometric growth of the snout is observed during which the snout shape changes from relatively short and broad in juveniles to relatively long and slender in adults. Since the shape of the buccal cavity is a critical...

متن کامل

Snout allometry in seahorses: insights on optimisation of pivot feeding performance during ontogeny.

As juvenile life-history stages are subjected to strong selection, these stages often show levels of performance approaching those of adults, or show a disproportionately rapid increase of performance with age. Although testing performance capacity in aquatic suction feeders is often problematic, in pivot feeders such as seahorses models have been proposed to estimate whether snout length is op...

متن کامل

Cranial Architecture of Tube - snouted

21 The long snout of pipefishes and seahorses (Syngnathidae, Gasterosteiformes) is formed as an 22 elongation of the ethmoid region. This is in contrast to many other teleosts with elongate 23 snouts (e.g. Butterflyfishes) in which the snout is formed as an extension of the jaws. 24 Syngnathid fishes perform very fast suction feeding, accomplished by powerful neurocranial 25 elevation and hyoid...

متن کامل

Musculoskeletal structure of the feeding system and implications of snout elongation in Hippocampus reidi and Dunckerocampus dactyliophorus.

A thorough morphological description of the feeding apparatus in Hippocampus reidi, a long-snouted seahorse, and Dunckerocampus dactyliophorus, an extremely long-snouted pipefish, revealed specialized features that might be associated with the fast and powerful suction feeding, like the two ligamentous connections between the lower jaw and the hyoid, the saddle joint of the latter with the susp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 216 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2013