The instability of periodic surface gravity waves
نویسندگان
چکیده
Euler’s equations describe the dynamics of gravity waves on the surface of an ideal fluid with arbitrary depth. In this paper, we discuss the stability of periodic travelling wave solutions to the full set of nonlinear equations via a non-local formulation of the water wave problem, modified from that of Ablowitz, Fokas & Musslimani (J. Fluid Mech., vol. 562, 2006, p. 313), restricted to a one-dimensional surface. Transforming the non-local formulation to a travelling coordinate frame, we obtain a new formulation for the stationary solutions in the travelling reference frame as a single equation for the surface in physical coordinates. We demonstrate that this equation can be used to numerically determine non-trivial travelling wave solutions by exploiting the bifurcation structure of this new equation. Specifically, we use the continuous dependence of the amplitude of the solutions on their propagation speed. Finally, we numerically examine the spectral stability of the periodic travelling wave solutions by extending Fourier–Floquet analysis to apply to the associated linear non-local problem. In addition to presenting the full spectrum of this linear stability problem, we recover past well-known results such as the Benjamin–Feir instability for waves in deep water. In shallow water, we find different instabilities. These shallow water instabilities are critically related to the wavelength of the perturbation and are difficult to find numerically. To address this problem, we propose a strategy to estimate a priori the location in the complex plane of the eigenvalues associated with the instability.
منابع مشابه
Unstable Surface Waves in Running Water
We consider the stability of periodic gravity free-surface water waves traveling downstream at a constant speed over a shear flow of finite depth. In case the free surface is flat, a sharp criterion of linear instability is established for a general class of shear flows with inflection points and the maximal unstable wave number is found. Comparison to the rigid-wall setting testifies that free...
متن کاملThe Deterministic Generation of Extreme Surface Water Waves Based on Soliton on Finite Background in Laboratory
This paper aims to describe a deterministic generation of extreme waves in a typical towing tank. Such a generation involves an input signal to be provided at the wave maker in such a way that at a certain position in the wave tank, say at a position of a tested object, a large amplitude wave emerges. For the purpose, we consider a model called a spatial-NLS describing the spatial propagation o...
متن کاملDispersion of Torsional Surface Wave in a Pre-Stressed Heterogeneous Layer Sandwiched Between Anisotropic Porous Half-Spaces Under Gravity
The study of surface waves in a layered media has their viable application in geophysical prospecting. This paper presents an analytical study on the dispersion of torsional surface wave in a pre-stressed heterogeneous layer sandwiched between a pre-stressed anisotropic porous semi-infinite medium and gravitating anisotropic porous half-space. The non-homogeneity within the intermediate layer a...
متن کاملParticle trajectories in linear periodic capillary and capillary-gravity water waves.
Surface tension plays a significant role as a restoration force in the setting of small-amplitude waves, leading to pure capillary and gravity-capillary waves. We show that within the framework of linear theory, the particle paths in a periodic gravity-capillary or pure capillary wave propagating at the surface of water over a flat bed are not closed.
متن کاملTransversally periodic solitary gravity-capillary waves.
When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity-capillary solitary waves are foun...
متن کامل