Breathers in oscillator chains with Hertzian interactions

نویسندگان

  • Guillaume James
  • Panayotis Kevrekidis
  • Jesus Cuevas
  • Panayotis G. Kevrekidis
  • Jesús Cuevas
چکیده

We prove nonexistence of breathers (spatially localized and time-periodic oscillations) for a class of Fermi-Pasta-Ulam lattices representing an uncompressed chain of beads interacting via Hertz’s contact forces. We then consider the setting in which an additional on-site potential is present, motivated by the Newton’s cradle under the effect of gravity. Using both direct numerical computations and a simplified asymptotic model of the oscillator chain, the so-called discrete p-Schrödinger (DpS) equation, we show the existence of discrete breathers and study their spectral properties and mobility. Due to the fully nonlinear character of Hertzian interactions, breathers are found to be much more localized than in classical nonlinear lattices and their motion occurs with less dispersion. In addition, we study numerically the excitation of a traveling breather after an impact at one end of a semi-infinite chain. This case is well described by the DpS equation when local oscillations are faster than binary collisions, a situation occuring e.g. in chains of stiff cantilevers decorated by spherical beads. When a hard anharmonic part is added to the local potential, a new type of traveling breather emerges, showing spontaneous direction-reversing in a spatially homogeneous system. Finally, the interaction of a moving breather with a point defect is also considered in the cradle system. Almost total breather reflections are observed at sufficiently high defect sizes, suggesting potential applications of such systems as shock wave reflectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breathers and surface modes in oscillator chains with Hertzian interactions

We study localized waves in chains of oscillators coupled by Hertzian interactions and trapped in local potentials. This problem is originally motivated by Newton’s cradle, a mechanical system consisting of a chain of touching beads subject to gravity and attached to inelastic strings. We consider an unusual setting with local oscillations and collisions acting on similar time scales, a situati...

متن کامل

Nonlinear waves in granular crystals

We investigate excitations in one-dimensional granular crystals, i.e. chains of solid beads with nonlinear interaction forces. These chains have attracted attention because of their relative experimental simplicity and interesting dynamics. They can be modelled as chains of coupled oscillators in a model reminiscent of the celebrated Fermi-Pasta-Ulam (FPU) equations. The nonlinearity of the int...

متن کامل

Dynamical properties of discrete breathers in curved chains with first and second neighbor interactions.

We present the study of discrete breather dynamics in curved polymerlike chains consisting of masses connected via nonlinear springs. The polymer chains are one dimensional but not rectilinear and their motion takes place on a plane. After constructing breathers following numerically accurate procedures, we launch them in the chains and investigate properties of their propagation dynamics. We f...

متن کامل

Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals.

We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap br...

متن کامل

Breathers in a locally resonant granular chain with precompression

We study a locally resonant granular material in the form of a precompressed Hertzian chain with linear internal resonators. Using an asymptotic reduction, we derive an effective nonlinear Schrödinger (NLS) modulation equation. This, in turn, leads us to provide analytical evidence, subsequently corroborated numerically, for the existence of two distinct types of discrete breathers related to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011