Pulsating Front Speed-up and Quenching of Reaction by Fast Advection
نویسنده
چکیده
We consider reaction-diffusion equations with combustion-type non-linearities in two dimensions and study speed-up of their pulsating fronts by general periodic incompressible flows with a cellular structure. We show that the occurence of front speed-up in the sense limA→∞ c∗(A) = ∞, with A the amplitude of the flow and c∗(A) the (minimal) front speed, only depends on the geometry of the flow and not on the reaction function. In particular, front speed-up occurs for KPP reactions if and only if it does for ignition reactions. We provide a sharp characterization of the periodic symmetric flows which achieve this speed-up and also show that these are precisely those which, when scaled properly, are able to quench any ignition reaction.
منابع مشابه
Reaction-diffusion Front Speed Enhancement by Flows
Abstract. We study flow-induced enhancement of the speed of pulsating traveling fronts for reaction-diffusion equations, and quenching of reaction by fluid flows. We prove, for periodic flows in two dimensions and any combustion-type reaction, that the front speed is proportional to the square root of the (homogenized) effective diffusivity of the flow. We show that this result does not hold in...
متن کاملKPP Pulsating Front Speed-up by Flows
We obtain a criterion for pulsating front speed-up by general periodic incompressible flows in two dimensions and in the presence of KPP nonlinearities. We achieve this by showing that the ratio of the minimal front speed and the effective diffusivity of the flow is bounded away from zero and infinity by constants independent of the flow. We also study speed-up of reaction-diffusion fronts by v...
متن کاملBounds on the speed of propagation of the KPP fronts in a cellular flow
We consider a reaction-diffusion-advection equation with a nonlinearity of the KPP type in a cellular flow. We show that the minimal pulsating traveling front speed c∗(A) in a flow of amplitude A satisfies the upper and lower bounds C1A ≤ c∗(A) ≤ C2A for A 1. We also analyze a related eigenvalue problem and establish an “averaging along the streamlines” principle for the positive eigenfunction ...
متن کاملSharp Asymptotics for Kpp Pulsating Front Speed-up and Diffusion Enhancement by Flows
We study KPP pulsating front speed-up and effective diffusivity enhancement by general periodic incompressible flows. We prove the existence of and determine the limits c∗(A)/A and D(A)/A as A → ∞, where c∗(A) is the minimal front speed and D(A) the effective diffusivity.
متن کاملQuenching of Flames by Fluid Advection
We consider a simple scalar reaction-advection-diffusion equation with ignitiontype nonlinearity and discuss the following question: What kinds of velocity profiles are capable of quenching any given flame, provided the velocity’s amplitude is adequately large? Even for shear flows, the answer turns out to be surprisingly subtle. If the velocity profile changes in space so that it is nowhere id...
متن کامل