ar X iv : m at h / 06 02 27 6 v 1 [ m at h . PR ] 1 3 Fe b 20 06 A Sub - Gaussian Berry - Esseen Theorem For the Hypergeometric Distribution

نویسندگان

  • S. N. Lahiri
  • A. Chatterjee
  • T. Maiti
چکیده

In this paper, we derive a necessary and sufficient condition on the parameters of the Hypergeomet-ric distribution for weak convergence to a Normal limit. We establish a Berry-Esseen theorem for the Hypergeometric distribution solely under this necessary and sufficient condition. We further derive a nonuniform Berry-Esseen bound where the tails of the difference between the Hypergeo-metric and the Normal distribution functions are shown to decay at a sub-Gaussian rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - p h / 06 02 06 6 v 1 7 Fe b 20 06 X ( 3872 ) in effective field theory

We consider the implications from the possibility that the recently observed state X(3872) is a meson-antimeson molecule. We write an effective Lagrangian consistent with the heavy-quark and chiral symmetries needed to describe X(3872) and study its properties.

متن کامل

ar X iv : m at h / 06 02 64 7 v 1 [ m at h . A G ] 2 8 Fe b 20 06 HIGHER FANO MANIFOLDS AND RATIONAL SURFACES

Let X be a Fano manifold of pseudo-index ≥ 3 such that c 1 (X) 2 − 2c 2 (X) is nef. Irreducibility of some spaces of rational curves on X (in fact, a weaker hypothesis) implies a general point of X is contained in a rational surface.

متن کامل

ar X iv : m at h / 06 02 64 2 v 1 [ m at h . A G ] 2 8 Fe b 20 06 DIVISOR CLASSES AND THE VIRTUAL CANONICAL BUNDLE FOR GENUS 0 MAPS

Some divisor class relations for genus 0 curves are proved and used to compute the Cartier divisor class of the virtual canonical bundle for genus 0 maps to a smooth target. Many results here first appeared in [6] and [5]; our proofs use a completely different method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006