Combinatorial Geometry with Algorithmic Applications
نویسندگان
چکیده
منابع مشابه
The Approximate Rank of a Matrix and its Algorithmic Applications
We study the -rank of a real matrix A, defined for any > 0 as the minimum rank over matrices that approximate every entry of A to within an additive . This parameter is connected to other notions of approximate rank and is motivated by problems from various topics including communication complexity, combinatorial optimization, game theory, computational geometry and learning theory. Here we giv...
متن کاملThe Role of Algorithmic Applications in the Development of Architectural Forms (Case Study:Nine High-Rise Buildings)
The process of developing architectural forms has greatly been changed by advances in digital technology, especially in design tools and applications. In recent years, the advent of graphical scripting languages in the design process has profoundly affected 3D modeling. Scripting languages help develop algorithms and geometrical grammar of shapes based on their constituent parameters. This stud...
متن کاملGeometrie Algorithms and Algorithmic Geometry
In this paper I would like to illustrate two facts. First, that ideas borrowed from convex, projective, and other classical branches of geometry play an important role in the design of algorithms for problems that do not seem to have anything to do with geometry: for problems in optimization, combinatorics, algebra, and number theory. Second, that such applications of geometry suggest some very...
متن کاملGeometric Arrangements: Substructures and Algorithms
In this thesis we study a variety of problems in computational and combinatorial geometry, which involve arrangements of geometric objects in the plane and in higher dimensions. Some of these problems involve the design and analysis of algorithms on arrangements and related structures, while others establish combinatorial bounds on the complexity of various substructures in arrangements. Inform...
متن کاملThe Bohnenblust–Spitzer Algorithm and its Applications
The familiar bijections between the representations of permutations as words and as products of cycles have a natural class of “data driven” extensions that permit us to use purely combinatorial means to obtain precise probabilistic information about the geometry of random walks. In particular, we show that the algorithmic bijection of Bohnenblust and Spitzer can be used to obtain means, varian...
متن کامل